MRI Systems I: B0 and Bulk Magnetization

M219 - Principles and Applications of MRI Kyung Sung, Ph.D. 1/11/2022

Course Overview

- Course website
	- https://mrrl.ucla.edu/pages/m219
- 2023 course schedule
	- https://mrrl.ucla.edu/pages/m219 2023
- Assignments
	- Homework #1 will be out on 1/16 (due on 1/30)
- Office hours, Fridays 10-12pm
	- In-person (Ueberroth, 1417B)
	- Zoom is also available

What is MRI?

- Magnetic
	- We need a big magnet
- Resonance
	- Excitation energy has to be on-resonance
- Imaging
	- We can make pretty pictures

What is MRI?

MRI follows a classic excitation-reception paradigm.

Faraday's Law of Induction

MRI encodes spatial information and image contrast in the echo.

Requirements for MRI

- NMR Active Nuclei
	- $-$ e.g. ¹H in H₂0
- Magnetic Field (B₀): Polarizer
- RF System (B₁): Exciter
- Coil: Receiver
- Gradients (G_X, G_Y, G_Z) : Spatial Encoding

MRI Hardware

Cryostat

Z-grad

X-grad

Y-grad

Body Tx/Rx Coil (B1)

Main Coil (B₀)

Image Adapted From: http://www.ee.duke.edu/~jshorey

Nuclear Spin

Classical View

- Nuclei with an odd mass number have *half-integral spin*
	- Spin-1/2 1H, 13C, 15N, 19F, 31P
	- $-$ Spin-3/2 $-$ ²³Na
- Nuclei with an even mass number and an even charge number have *zero spin*
	- $-$ 12C and 16O

Spin Angular Momentum

Spin + Mass $\spmb{\mathfrak{m}}$ Spin Angular Momentum $\spmb{\mathfrak{m}}$ \vec{S} [kg·m²s⁻¹]

⇥ *r* **m** *S* ⇥ ⇥ *v*

Spin Angular Momentum

Spin + Mass $\spmb{\mathfrak{m}}$ Spin Angular Momentum $\spmb{\mathfrak{m}}$ \vec{S} [kg·m²s⁻¹]

David Geffen

Magnetic Dipole Moments

Spin + Charge ➠ Magnetic Moment ➠ $\vec{\mu}$ [J•T⁻¹ *or* kg•m²/s²/T]

"a measure of the strength of the system's net magnetic source" --http://en.wikipedia.org/wiki/Magnetic_moment

Hydrogen nuclei have magnetic dipole moments.

Gyromagnetic Ratio

- Gyromagnetic Ratio
	- Physical constant
	- Unique for each NMR active nuclei
	- Ratio of the magnetic moment to the angular momentum

$$
\overrightarrow{\mu} = \gamma \overrightarrow{S} = \gamma \hbar \overrightarrow{I}
$$

- Governs the frequency of *precession*
- Gamma vs. Gamma-bar

$$
\gamma = \gamma/2\pi
$$

NMR Active Nuclei

The *relative* sensitivity is at constant magnetic field and equal number of nuclei.

– Using a factor of $\,\,\gamma^{\,\overline{4}}\,I\,(I+1)\,$; 1H is the reference standard. 11 $\overline{4}$ I $(I+1)$

The *absolute* sensitivity is the relative sensitivity multiplied by natural abundance.

P. Callaghan & http://www.cryst.bbk.ac.uk/PPS2/projects/schirra/html/nuclei.htm

Currents & Magnetic Fields

Electromagnet – A current in a wire generates a magnetic field.

http://www.magnet.fsu.edu/education/tutorials/magnetacademy/

Superconducting Electromagnet

MRI scanners are superconducting electromagnets.

B₀ Field

- \cdot B₀ field is:
	- Spatially uniform (over a volume of interest)
		- ~50cm @ isocenter
	- Temporally stable
		- $B_0(t)=B_0(t=0)e^{-(R/L)/t}$
		- Decays <1ppm/hour
	- $-$ Oriented along the z-axis (\vec{k})
		- Long axis of the scanner.

$$
\vec{B}_0 = B_0 \vec{k}
$$

Main Field (B₀) – Strength

- Earth's magnetic field – 0.5 Gauss
- Refrigerator magnet – 10-100 Gauss
- \cdot B₀ Field
	- $-0.5T = 5000$ Gauss
	- $-1.5T = 15000$ Gauss
	- 3.0T = 30000 Gauss

B0 Strength - Advantages

- **↑** $B_0 \Longrightarrow$ **↑** Polarization ($|\vec{M}|$) = **↑** SNR
	- $-$ **1** Polarization, therefore more \vec{M} for imaging.
	- SNR \propto B₀^{7/4} (**↑**Polarization + **↑Larmor Frequency**)
		- **1** Spatial resolution
		- **1** Temporal resolution
		- \blacklozenge Scan time

B0 Strength - Disadvantages

- \bullet B₀ \Rightarrow \bullet Specific Absorption Ratio (SAR)
	- Energy absorbed by body [W/kg]
	- $-$ SAR∝B₀²
- \bullet B₀ \Longrightarrow \bullet Cost
	- ~\$1,000,000 per Tesla
	- More shielding

Higher B₀ leads to higher SAR for patients and higher costs.

B0 Strength - Disadvantages

- **↑ B**₀ \Rightarrow **↑** Chemical shift (Δf)
	- 䢖 ∆f between fat and water
		- Fat and water have different Larmor frequencies
			- \sim 220Hz different at 1.5T
			- ~440Hz different at 3.0T
		- Fat is *more* spatially mis-registered @ 3T
	- Good for spectroscopy...

Chemical Shift – Fat (–CH2) is ~220Hz *lower* at 1.5T

Main Field (B₀) – Shielding

- **Problem**: The B₀ field extends well beyond the scanner.
- **Shielding** reduces B₀ foot print
	- Reduces install cost
	- Reduces interference

• Passive Shielding

- Iron room shielding
- Heavy, not cheap
- **• Active Shielding**
	- Super-conducting coils that oppose (shield) B_0 fringe field
- "**Five Gauss Line**"
	- Threshold beyond which ferromagnetic objects are strictly prohibited
	- 5G=0.5mT

ACR Guidance Document on MR Safe Practices: 2013; *JMRI* 37:501–530 (2013)

RF Shielding

- RF fields are close to FM radio
	- $-$ 1H @ 1.5T \Rightarrow 63.85 MHz
	- $1H$ @ 3.0T ⇒ 127.71 MHz
	- KROQ \Rightarrow 106.7 MHz
- Need to shield local sources from interfering
- Copper room shielding required

MRI Zones

ACR Guidance Document on MR Safe Practices: 2013; *JMRI* 37:501–530 (2013)

B0 Hardware Anatomy

Superconducting Electromagnets

- MRI scanners are superconducting electromagnets
	- B-field is generated by flowing electricity
	- Permanent magnet MRI are uncommon

Superconducting Magnet

Superconducting Electromagnets

of when both the line voltage and children both the line voltage and children α

magnet no longer boils of or consumer boils of or consumer boils of or consumer boils of or consumer boils of

Coldhead (Cryocooler)

Re-condenses helium vapor and returns liquid helium to vessel.

Advances in Whole-Body MRI Magnets by Thomas C. Cosmus and Michael Parizh

Helium Fill Port

Helium boils off at 0 to 0.03 L/hour. \$10-\$25 per liter of liquid Helium.

Zero Boil-off and Low Volume (~20L vs 2000L) systems are emerging.

Advances in Whole-Body MRI Magnets by Thomas C. Cosmus and Michael Parizh

Liquid Helium

- **• Where does helium come from?**
	- **– Extracted from natural gas**
	- **– Strategic helium reserve**
	- **– Helium that escapes to atmosphere is lost** *forever***.**
- **• Zero boil-off design**
	- **– Captures and re-compresses cryogen**
	- **– Saves 700-1300L per year**

Main Field (B0) - Principles

 \cdot B₀ is a strong magnetic field

B $\bar{\bar B}$ $_0 = B_0$ \overline{k} *k*

- $> 1.5T$
- Z-oriented
- magnetization $(\vec{M})^T$ \cdot B₀ generates bulk $-$ More B_0 , more

M $\overline{\text{V}}$ *N total* $\sqrt{}$ $n =$ $\vec{\mu}$ $\vec{\mu}_n$

- B₀ forces \vec{M} to precess
	- Larmor Equation

$$
\omega=\gamma B
$$

Main Field (B0) - Principles

- \cdot B₀ is a strong magnetic field
	- $> 1.5T$
	- Z-oriented
- magnetization $(\vec{M})^T$ • B₀ generates bulk
	- $-$ More B_0 , more

B B $_0 = B_0$ \overline{k} *k* Eqn. 3.5

$$
\vec{M} = \sum_{n=1}^{N_{total}} \vec{\mu}_n
$$
 Eqn. 3.26

 $\omega = \gamma B$ Eqn. 3.18

- *M* precess
	- Larmor Equation

Magnetic Dipole Moments

Spin + Charge ➠ Magnetic Moment ➠ $\vec{\mu}$ [J•T⁻¹ *or* kg•m²/s²/T]

"a measure of the strength of the system's net magnetic source" --http://en.wikipedia.org/wiki/Magnetic_moment

Hydrogen nuclei have magnetic dipole moments.

Ntotal=0.24x1023 spins in a 2x2x10mm voxel **But not all spins contribute to our measured signal...**

B0 Field OFF

$$
\vec{M} = \sum_{n=1}^{N_{total}} \vec{\mu}_n = 0
$$

Spins point in all directions.

B₀ Field ON

B0 polarizes the spins and generates bulk magnetization.

$$
\vec{M} = \sum_{n=1}^{N_{total}} \vec{\mu}_n = M_z
$$

B0 Field ON

Only a very small number are spin-up relative to spin-down.

Zeeman Splitting

Zeeman Splitting

• The spin population difference in the two spin states is related to their energy difference. According to the well-known Boltzmann distribution:

$$
\frac{N_{\uparrow}}{N_{\downarrow}} = e^{-\Delta E/\kappa T}
$$

$$
\Delta E = \gamma \hbar B_0
$$

- *κ* = **Bolzmann constant**
- *T* = **Absolute temperature of the spin system**

At 1.5T,
$$
\frac{N_1}{N_1} = 0.999993
$$

– All imaging is based on weak polarization (enough for clinical)

Main Field (B0) - Principles

- \cdot B₀ is a strong magnetic field
	- $> 1.5T$
	- Z-oriented
- magnetization $(\vec{M})^T$ \cdot B₀ generates bulk $-$ More B_0 , more

B B $_0 = B_0$ \overline{k} *k* Eqn. 3.5

$$
\vec{M} = \sum_{n=1}^{N_{total}} \vec{\mu}_n
$$
 Eqn. 3.26

- \vec{M} precess
	- Larmor Equation

Spin vs. Precession

- **• Spin**
	- Intrinsic form of angular momentum
	- Quantum mechanical phenomena
	- No classical physics counterpart
		- Except by hand-waving analogy…
- **• Precession**
	- Spin+Mass+Charge give rise to precession

Precession

 \mathbf{F}_{g} and the weight of the top causes a change in the angular momentum L in the direction of that torque. This causes the top to precess.

https://en.wikipedia.org/wiki/Precession

Nuclear Magnetic Resonance

NMR Phenomena

Magnetic Moment

Charge Magnetic
Spin Moment

Protons behave like small magnets because of spin and charge.

Magnetic Moment

Charge Magnetic
Spin Moment

Protons (small magnets) align with an external magnetic field (B₀).

Angular Momentum

Protons have angular momentum because of spin and mass.

Precession (Top Analogy)

Gravity

Precession Spin │ Angular
∫Momentum **Mass**

A spinning tops precesses in a gravitational field. A spinning proton precesses in a magnetic (B₀) field.

Larmor Frequency

Larmor Frequency $=\omega = \gamma$ Bo

The frequency of precession is the Larmor frequency.

NMR Active Nuclei

- Spin + Charge + Mass \Longrightarrow NMR Active
	- Spin? *Intrinsic* form of angular momentum.
- Nuclei have spin angular momentum if:
	- Odd atomic mass (# protons+neutrons) **And/Or**
	- Odd atomic number (# of protons)
- Spin angular momentum
	- Leads to precession
	- Spin ≠ precession (a top spins *and* precesses)
- Frequency of precession (Larmor Frequency)
	- Gyromagnetic Ratio (γ)
		- Physical constant
		- Unique for each NMR active nuclei

Hydrogen

Carbon-13

What is so special about 1H? Spin, charge, and mass!

Larmor Equation

- Spin≠Precession
	- Protons *intrinsically* have spin
	- Protons *precess* in the presence of a B-field
- Larmor frequency increases with:
	- $-$ Larger B₀
	- Higher gyromagnetic ratio
	- Higher frequencies produce stronger signals...

$\omega = \gamma B_0$

NMR Active Nuclei

The *relative sensitivity* is at constant magnetic field and equal number of nuclei The *absolute sensitivity* is the relative sensitivity multiplied by natural abundance

Quiz: NMR - True or False?

- 1. Electron spin is the key to NMR
- 2. MRI is *nothing* without spin, charge, and mass
- 3. All atomic nuclei are NMR active.
- 4. Spin and precession are the same.
- 5. Higher fields lead to faster precession

Quiz: Main Field - True or False?

- 1. B₀ is rare earth permanent magnet.
- 2. 1 Tesla=1000 Gauss.
- 3. Higher fields increase polarization, which contributes to better image quality
- 4. Exams at higher fields have lower SAR.
- 5. 1H always precesses at the same Larmor frequency.

- Related reading materials
	- Nishimura Chap 3 and 4

Kyung Sung, Ph.D. KSung@mednet.ucla.edu http://mrrl.ucla.edu/sunglab