Bloch Equations and Relaxation II

M219 - Principles and Applications of MRI Kyung Sung, Ph.D.

1/22/2025

Course Overview

- 2025 course schedule
 - https://mrrl.ucla.edu/pages/m219_2025
- Assignments
 - Homework #1 due on 1/29

- TA office hours, Wed 4-6pm
- Office hours, Fri 10-11am

Relationship Between Lab and Rotating Frames

$$\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B}$$

Rotating Frame Definitions

$$ec{M}_{rot} \equiv \left[egin{array}{c} M_{x'} \ M_{y'} \ M_{z'} \end{array}
ight] \qquad ec{B}_{rot} \equiv \left[egin{array}{c} B_{x'} \ B_{y'} \ B_{z'} \end{array}
ight]$$

$$ec{B}_{rot} \equiv \left[egin{array}{c} B_{x'} \ B_{y'} \ B_{z'} \end{array}
ight]$$

$$B_{z'} \equiv B_z$$
$$M_{z'} \equiv M_z$$

$$\overrightarrow{M}_{lab}(t) = R_Z(\omega_{RF}t) \cdot \overrightarrow{M}_{rot}(t)$$

$$\overrightarrow{B}_{lab}(t) = R_Z(\omega_{RF}t) \cdot \overrightarrow{B}_{rot}(t)$$

Bulk magnetization components in the rotating frame.

Applied B-field components in the rotating frame.

$$rac{dec{M}}{dt} = ec{M} imes \gamma ec{B}$$

$$\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B} \qquad \qquad \frac{d\vec{M}_{rot}}{dt} = \vec{M}_{rot} \times \gamma \vec{B}_{eff}$$

Nishimura - Chap 6 (Appendix I)

Bloch Equation (Rotating Frame)

$$\overrightarrow{B}(t) = B_0 \hat{k} + B_1^e(t) [\cos(\omega_{RF}t + \theta)\hat{i} - \sin(\omega_{RF}t + \theta)\hat{j}]$$

$$\overrightarrow{B}_{lab}(t) = \begin{pmatrix} B_1^e(t)\cos(\omega_{RF}t + \theta) \\ -B_1^e(t)\sin(\omega_{RF}t + \theta) \\ B_0 \end{pmatrix} \qquad \overrightarrow{B}_{rot}(t) = \begin{pmatrix} B_1^e(t)\cos\theta \\ -B_1^e(t)\sin\theta \\ B_0 \end{pmatrix}$$

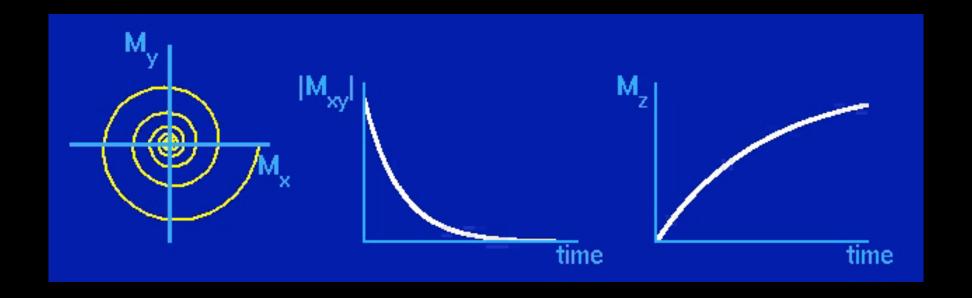
$$\vec{B}_{eff} \equiv \frac{\vec{\omega}_{rot}}{\gamma} + \vec{B}_{rot} \qquad \overrightarrow{\omega}_{rot} = \begin{pmatrix} 0 \\ 0 \\ -\omega_{RF} \end{pmatrix}$$
 Effective B-field that Applied B-field in the rotating frame. M experiences in the

Fictitious field that demodulates the apparent effect of *B*₀.

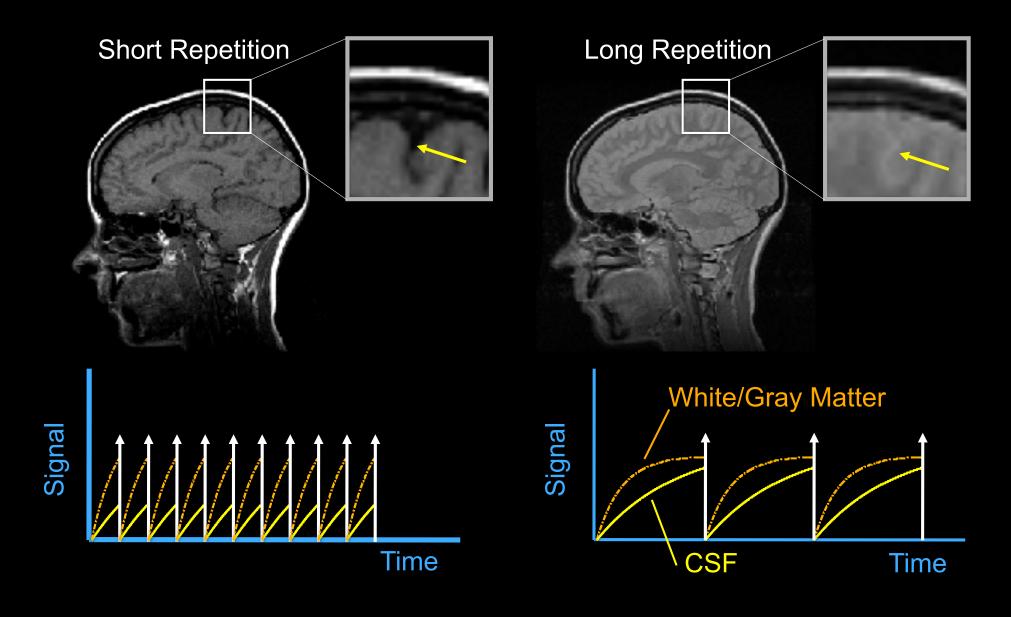
rotating frame.

Bloch Equation (Rotating Frame)

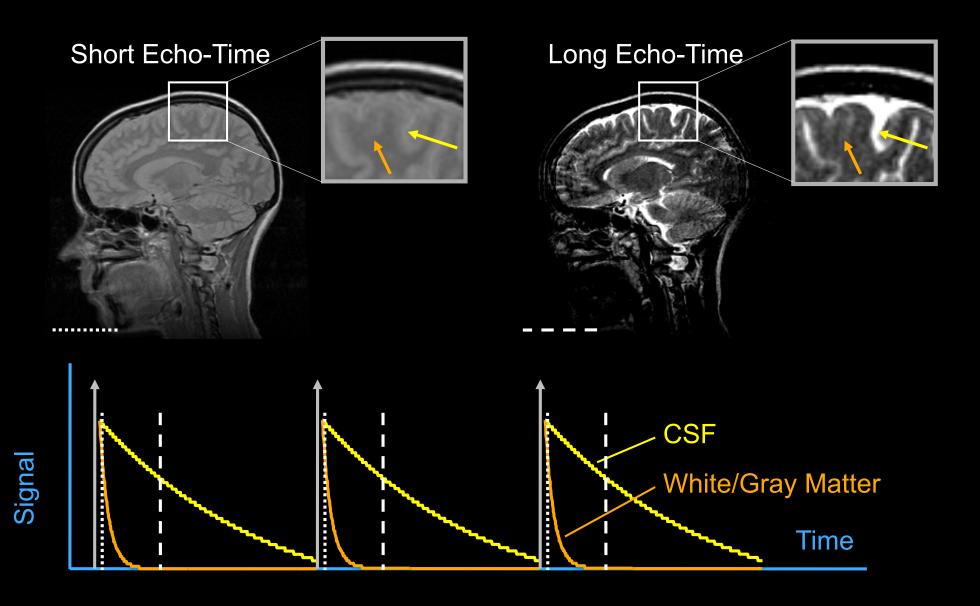
$$\vec{B}_{eff} \equiv \frac{\vec{\omega}_{rot}}{\gamma} + \vec{B}_{rot}$$


Assume no RF phase $(\theta = 0)$

$$\overrightarrow{B}_{rot}(t) = \begin{pmatrix} B_1^e(t) \\ 0 \\ B_0 \end{pmatrix} \qquad \overrightarrow{\omega}_{rot} = \begin{pmatrix} 0 \\ 0 \\ -\omega_{RF} \end{pmatrix}$$

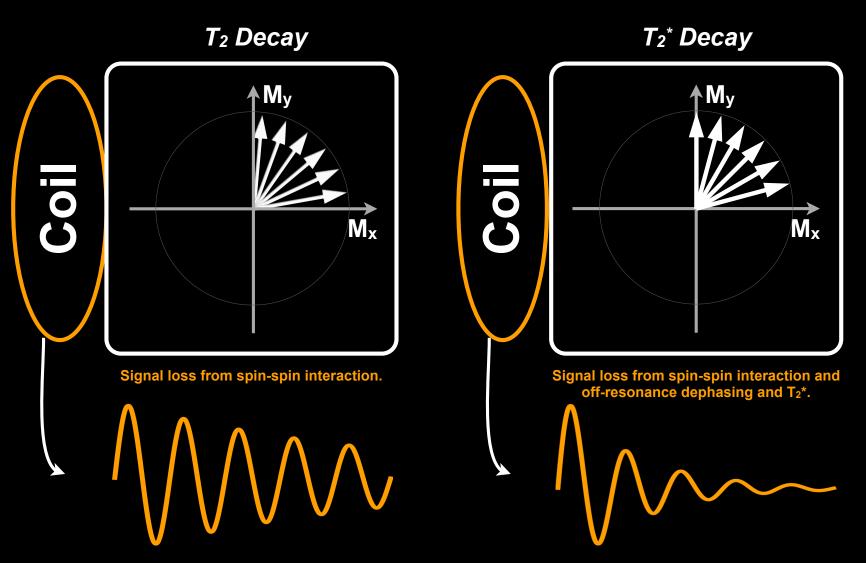

$$\overrightarrow{B}_{eff}(t) = \begin{pmatrix} B_1^e(t) \\ 0 \\ B_0 & \gamma \end{pmatrix}$$

Relaxation


- Magnetization returns exponentially to equilibrium:
 - Longitudinal recovery time constant is T1
 - Transverse decay time constant is T2
- Relaxation and precession are independent

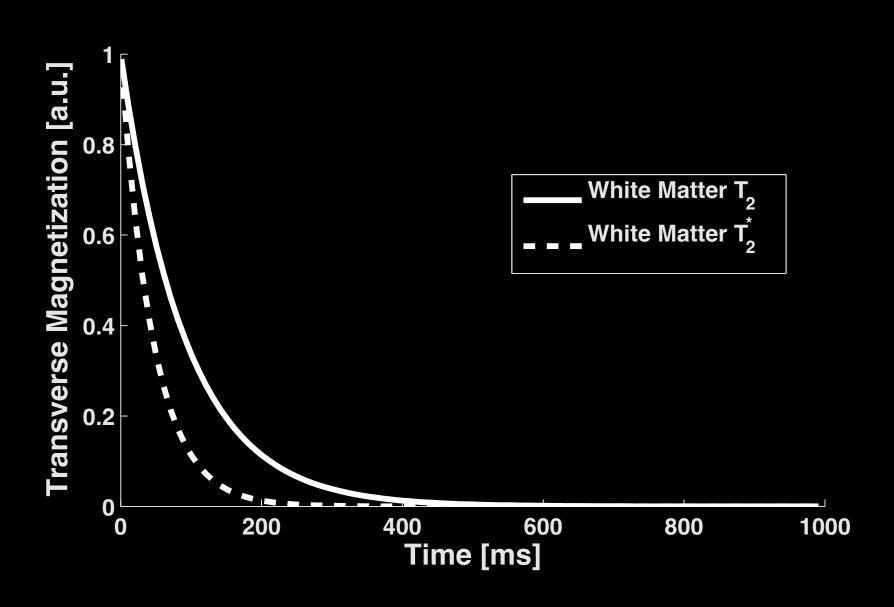
T₁ Contrast

T2 Contrast

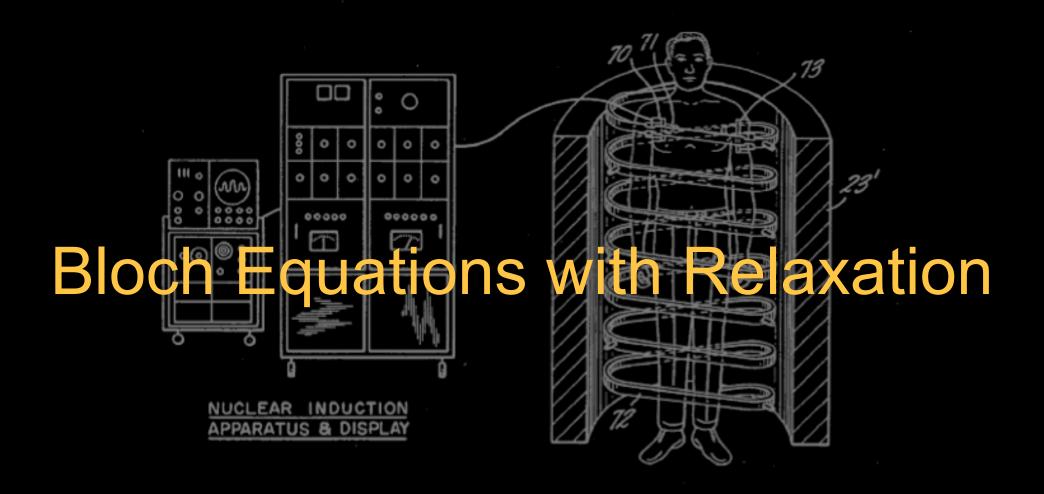

T₂* Relaxation

T₂* Relaxation

$$\frac{1}{T_2^*} = \frac{1}{T_2} + \gamma \Delta B_0$$


- T₂* is "observed" transverse relaxation time constant
- T₂* consists of <u>irreversible spin-spin (T₂)</u>
 <u>dephasing</u> and <u>reversible intravoxel spin dephasing</u> due to off-resonance
- Sources of off-resonance:
 - B₀ inhomogeneity
 - susceptibility differences (e.g. air spaces)

T₂ versus T₂*



T₂* is signal loss from spin dephasing and T₂

T2*<T2 (always!)

SHEET 2 OF 2

F1G. 2

Bloch Equations with Relaxation

$$\frac{d\vec{\mathbf{M}}}{dt} = \vec{\mathbf{M}} \times \gamma \vec{\mathbf{B}} - \frac{M_x \hat{\mathbf{i}} + M_y \hat{\mathbf{j}}}{T_2} - \frac{(M_z - M_0) \hat{\mathbf{k}}}{T_1}$$

- Differential Equation
 - Ordinary, Coupled, Non-linear
- No analytic solution, in general.
 - Analytic solutions for simple cases.
 - Numerical solutions for all cases.
- Phenomenological
 - Exponential behavior is an approximation.

Bloch Equations - Lab Frame

$$\frac{d\vec{\mathbf{M}}}{dt} = \vec{\mathbf{M}} \times \gamma \vec{\mathbf{B}} - \frac{M_x \hat{\mathbf{i}} + M_y \hat{\mathbf{j}}}{T_2} - \frac{(M_z - M_0) \, \hat{\mathbf{k}}}{T_1}$$
 Precession Transverse Longitudinal Relaxation

Precession

- Magnitude of M unchanged
- Phase (rotation) of M changes due to B

Relaxation

- T₁ changes are slow O(100ms)
- T₂ changes are fast O(10ms)
- Magnitude of M can be ZERO

Diffusion

- Spins are thermodynamically driven to exchange positions.
 - Bloch-Torrey Equations

Bloch Equations – Rotating Frame

$$\frac{\partial \vec{M}_{rot}}{\partial t} = \gamma \vec{M_{rot}} \times \vec{B}_{eff} - \underbrace{\frac{M_{x'}\vec{i'} + M_{y'}\vec{j'}}{T_2}}_{\text{"Precession"}} - \underbrace{\frac{(M_{z'} - M_0)\vec{k'}}{T_1}}_{\text{Longitudinal Relaxation}}$$

$$\vec{B}_{eff} \triangleq \frac{\omega}{\gamma} + \vec{B}_{rot}$$
 \uparrow

The applied B₀ and B₁ field in the rotating frame

Effective B-field that M experiences in the rotating frame

Fictitious field created by the rotating frame that demodulates the apparent effect of $B_{\rm 0}$

Free Precession in the Rotating Frame with Relaxation

Free Precession in the Rotating Frame

$$\frac{\partial \vec{M}_{rot}}{\partial t} = \gamma \vec{M}_{rot} \times \vec{B}_{eff} - \frac{M_{x'}\vec{i'} + M_{y'}\vec{j'}}{T_2} - \frac{(M_{z'} - M_0)\vec{k'}}{T_1}$$

$$\vec{B}_{eff} \triangleq \frac{\vec{\omega}}{\gamma} + \vec{B}_{rot}$$

$$\vec{\omega}_{rot} = \vec{\omega} = -\gamma B_0 \hat{k}$$
 $\vec{B}_{rot} = B_0 \hat{k}$

$$\vec{\mathbf{B}}_{rot} = \mathbf{B}_0 \hat{k}$$

$$\vec{B}_{eff} = \vec{0} \\ \frac{\partial \vec{M}_{rot}}{\partial t} = -\frac{M_{x'}\vec{i}' + M_{y'}\vec{j}'}{T_2} - \frac{(M_{z'} - M_0)\vec{k}'}{T_1}$$

Free Precession in the Rotating Frame

$$\frac{\partial \vec{M}_{rot}}{\partial t} = -\frac{M_{x'}\vec{i}' + M_{y'}\vec{j}'}{T_2} - \underbrace{\frac{(M_{z'} - M_0)\vec{k}'}{T_1}}_{\text{Longitudinal Relaxation}}$$

- No precession
- T₁ and T₂ Relaxation
- Drop the diffusion term
- System or first order, linear, separable ODEs!

Free Precession in the Rotating Frame

$$\frac{\partial \vec{M}_{rot}}{\partial t} = -\frac{M_{x'}\vec{i}' + M_{y'}\vec{j}'}{T_2} - \underbrace{\frac{(M_{z'} - M_0)\vec{k}'}{T_1}}_{\text{Longitudinal Relaxation}}$$

Solution:

$$M_{z'}(t) = M_z^0 e^{-t/T_1} + M_0 (1 - e^{-t/T_1})$$

 $M_{x'y'}(t) = M_{x'y'}(0_+) e^{-t/T_2}$

Forced Precession in the Rotating Frame with Relaxation

Forced Precession in the Rot. Frame with Relaxation

$$\frac{\partial \vec{M}_{rot}}{\partial t} = \gamma \vec{M}_{rot} \times \vec{B}_{eff} - \frac{\vec{M}_{x'}\vec{i'} + \vec{M}_{y'}\vec{j'}}{T_2} - \frac{(\vec{M}_{z'} - \vec{M}_0)\vec{k'}}{T_1}$$

$$\vec{B}_{eff} \triangleq \frac{\vec{\omega}}{\gamma} + \vec{B}_{rot}$$

$$\vec{\omega}_{rot} = \vec{\omega} = -\gamma B_0 \hat{k} \qquad \vec{B}_{rot} = B_0 \hat{k} + B_1^e(t) \hat{i}'$$

$$\vec{B}_{eff} = B_1^e(t)\hat{i}'$$

Forced Precession in the Rot. Frame with Relaxation

$$\frac{\partial \vec{M}_{rot}}{\partial t} = \gamma \vec{M}_{rot} \times \vec{B}_{eff} - \frac{M_{x'}\vec{i'} + M_{y'}\vec{j'}}{T_2} - \frac{(M_{z'} - M_0)\vec{k'}}{T_1}$$
$$\vec{B}_{eff} = B_1^e(t)\hat{i'}$$

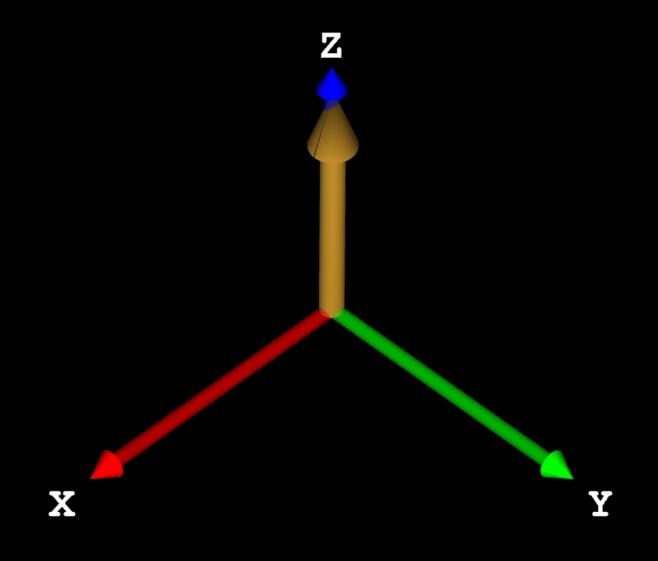
- B1 induced nutation
- T₁ and T₂ Relaxation
- Drop the diffusion term
- System or first order, linear, coupled PDEs!
- When does this equation apply?

Forced Precession in the Rotating Frame with Relaxation

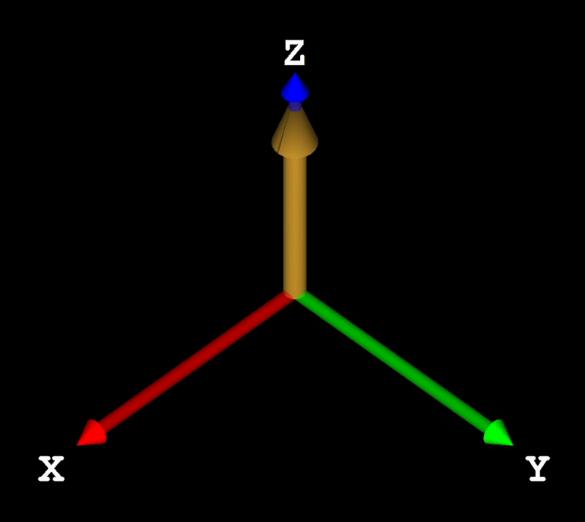
- RF pulses are short
 - $-100\mu s$ to 5ms
- Relaxation time constants are long
 - $-T_1 O(100s) ms$
 - $-T_2 O(10s) ms$
- Complicated Coupling
- Best suited for simulation

Free? Forced? Relaxation?

- We've considered all combinations of:
 - Free and forced precession
 - With and without relaxation
 - Laboratory and rotating frames
- Which one's concern M219 the most?
 - Free precession in the rotating frame with relaxation
 - Forced precession in the rotating frame without relaxation.
- We can, in fact, simulate all of them...

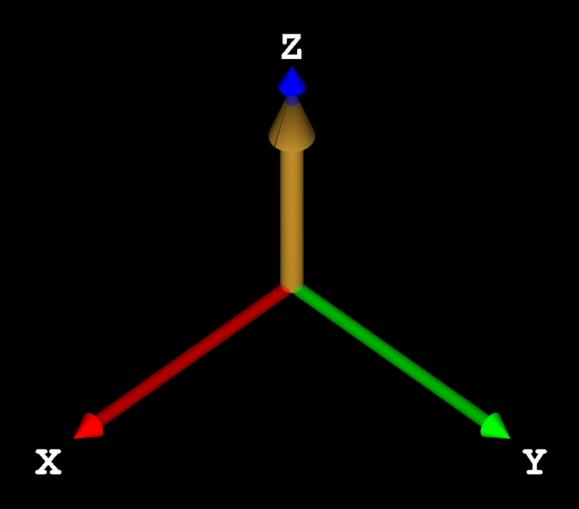

Types of RF Pulses

- Excitation Pulses
- Inversion Pulses
- Refocusing Pulses
- Saturation Pulses
- Spectrally Selective Pulses
- Spectral-spatial Pulses
- Adiabatic Pulses


Excitation Pulses

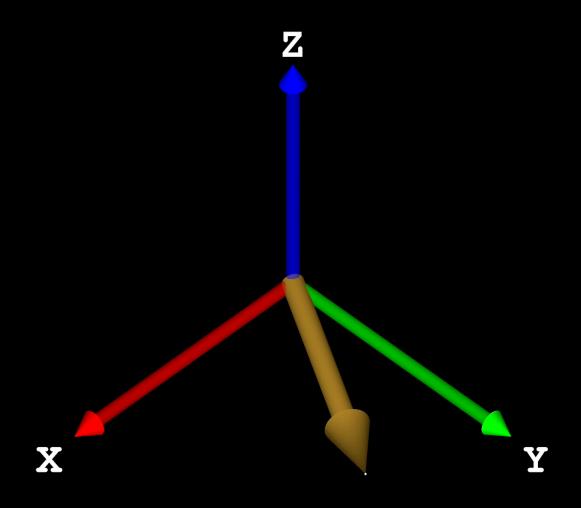
- Tip M_z into the transverse plane
- Typically 200µs to 5ms
- Non-uniform across slice thickness
 - Imperfect slice profile
- Non-uniform within slice
 - Termed B₁ inhomogeneity
 - Non-uniform signal intensity across FOV

90° Excitation Pulse


Small Flip Angle Excitation

Inversion Pulses

- Typically, 180° RF Pulse
 - non-180° that still results in -Mz
- Invert Mz to -Mz
 - Ideally produces no M_{XY}
- Hard Pulse
 - Constant RF amplitude
 - Typically non-selective
- Soft (Amplitude Modulated) Pulse
 - Frequency selective
 - Spatially Selective


Inversion Pulses

Refocusing Pulses

- Typically, 180° RF Pulse
 - Provides optimally refocused M_{XY}
 - Largest spin echo signal
- non-180°
 - Partial refocusing
 - Lower SAR
 - Multiple non-180° produce stimulated echoes
- Refocus spin dephasing due to
 - imaging gradients
 - local magnetic field inhomogeneity
 - magnetic susceptibility variation
 - chemical shift

Refocusing Pulses

Frequency Selectivity of RF Pulses

Matlab Demo


```
% now we need to apply the Bloch equation to solve the forced precession f
M=zeros(3,length(time_ticks)+1,4000);
M will store the initial M vector and the M vector after each of the 1000
for j=1:4000 %% we are considering each of the off-resonance frequencies i
    fq=freq(j);%frequency in Hz
    B_eff=[B1; zeros(1,length(B1)); fq*ones(1,length(B1))/gamma];
    M(:,1,j)=[0;0;1];%%initialization of the magnetizations. Every spin, re
    for k=1:length(B1)
        rot_axis=squeeze(B_eff(:,k));
        axis_len=sqrt(rot_axis(1)^2+rot_axis(3)^2);
        angle=atan(rot_axis(3)/rot_axis(1))*180/pi;
        if rot_axis(1)<0</pre>
            angle=angle+180;
        end
        temp=Ry(-angle, squeeze(M(:,k,j)));
        temp=Rx(axis_len*gamma*360/1e6,temp); % Theta is in degrees
        M(:,k+1,j)=Ry(angle,temp);
    end
```

end

Questions?

- Related reading materials
 - Nishimura Chap 4 and 5
 - Nishimura Chap 6 (Appendix I)

Kyung Sung, Ph.D.

KSung@mednet.ucla.edu

http://mrrl.ucla.edu/sunglab