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Today’s topics
• k-Space properties review 
• Compressed sensing MRI (with code examples) 

• Sparse representation 
• Incoherent artifacts 
• Nonlinear reconstruction  

• Compressed sensing MRI applications



MRI acceleration
• MRI acquisition time is limited by 

• MRI physics (encoding mechanisms, relaxation properties…) 
• Hardware constraints (gradient switching…)

Why does it take 

so long?

• Shorter MRI scan time can  
• Improve patient comfort 
• Reduce occurrence of motion artifacts 
• (from a hospital’s view) Increase throughput 

with better resource management



MRI acceleration
• Different acceleration strategies: 

• (1) Sequence design: Using a rapid acquisition strategy (e.g., EPI and spiral imaging) 

• (2) Simultaneous multi-slice (SMS) techniques: Using specialized RF pulses to excite 
multiple slices at the same time, followed by advanced reconstruction 

• (3) Data undersampling with advanced reconstruction:  
• a. Partial Fourier reconstruction: Using conjugate symmetry in k-space 
• b. Parallel imaging: Using sensitivity information from multiple coils  
• c. Compressed sensing: Using sparsity constraints for reconstruction   
• d. Deep learning: Using non-linear neural network trained with large datasets 

• (4) Hybrid techniques: Combining different acceleration strategies to achieve robust 
acceleration

https://mriquestions.com/echo-planar-imaging.html
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These techniques all require some prior 
information for image reconstruction



Underdetermined system

ky

kx

ky

kx

……

Fully-sampled
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(Missing some k-space lines)

Images with the same

undersampled k-space data

Use prior information about the images to 

help us solve the underdetermined problem



Compressed sensing MRI
• Compressed sensing MRI can reconstruct an image with high fidelity from 

undersampled k-space data given 
• (1) the image has transform sparsity (or a sparse representation in some 

transform domain) 
• (2) the k-space sampling pattern generates incoherent artifacts in the sparse 

transform domain 
• Compressed sensing MRI usually involves a nonlinear reconstruction method 

to recover the image



Sparse representation
• Many images have a sparse representation in some transform domain 
• Example 1: Discrete cosine transform (DCT) 

• JPEG uses DCT for image compression

Original image 2D DCT coefficients Compressed image (3.7-fold)

by preserving large DCT coefficients

See code example 01



Sparse representation
• Example 2: Wavelet transform 

• JPEG 2000 uses Wavelet transform for image compression

Original image 2D Wavelet coefficients Compressed image (5.3-fold)

by preserving large Wavelet coefficients

See code example 02



Sparse representation
• Example 3: Wavelet transform for a brain image

Original image 2D Wavelet coefficients Compressed image (4.8-fold)

by preserving large Wavelet coefficients

See code example 03



Sparse representation
• Many (MRI) images have a sparse representation in some transform domain

Brain image Noisy image2D Wavelet coefficients 

of a brain image

2D Wavelet coefficients 

of a noisy image

Sparse! Not so sparse…

See code example 04



Sparse representation
• How does this “prior information” can help in image reconstruction problem? 

• When the reconstruction problem is under-determined, the corresponding 
artifact-free or fully sampled image that best matches the undersampled 
data will more likely be one that has a sparse representation 

See code example 04



Incoherent artifacts
• The second requirement for compressed sensing MRI: 

• The undersampling pattern should generate incoherent artifacts in the 
sparse transform domain  

• What are incoherent artifacts? 
• Noise-like or diffuse image artifacts that lack a clear, structured, or 

predictable pattern



Incoherent artifacts

( Figure from: Lustig et al., MRM 2007 )

• Using the point spread function to analyze



Incoherent artifacts

Wavelet domainImage domaink-space domain

Wavelet transform

Inverse

Wavelet transformFourier transform

Inverse

Fourier transform

See code example 05



L0, L1 and L2 norm
• Vector norm: a method to measure the length of a vector 

• L0 norm ( ): number of non-zero entries 

• L1 norm ( ): sum of absolute values of the entries 

• L2 norm ( ): square root of sum of squared values of the entries

x 0

x 1

x 2

x 1 = x1 + x2 + . . . + xn
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L0, L1 and L2 norm

• Two vectors with similar energy (L2 norm) can have different levels of sparsity 
(L1 norm)

• 


• 


•
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Exercises
• Suppose we have a 2D vector   

• Exercise 1: 

• Exercise 2: 

• Example 3: 

x = [x1, x2]

argminx | |x | |2
s . t . 2x2 = x1 + 2

argminx | |x | |1

s . t . 2x2 = x1 + 2

2x2 = x1 + 2

x1

x2

2x2 = x1 + 2

x1

x2

x2
1 + x2

2 = n

|x1 | + |x2 | = n

argminx | |x | |0

s . t . 2x2 = x1 + 2



Exercises
• L2 norm minimization: Find a solution with smallest energy 

• L1 and L0 norm minimization: Find a sparse solution



Mathematical formulation
Find an image that has the sparsest coefficients in the Wavelet domain 

and the image is consistent with the undersampled k-space data

argminx Wx 0
Fx − y

2
< ϵsubject to

W: Wavelet transform operator

x: reconstructed image

F: Fourier transform operator

y: acquired undersampled k-space dataargminx Wx 1

Fx − y
2

< ϵsubject to

Convex relaxation

using L1 norm

Our goal:

Turn into an 

optimization problem



Mathematical formulation

argminx Fx − y
2

2
+ λ Wx 1

Use Lagrangian form

W: Wavelet transform operator

x: reconstructed image

F: Fourier transform operator

y: acquired undersampled k-space data

: regularization parameter


U: k-space sampling pattern
λ

argminx Wx 1
Fx − y

2
< ϵsubject to

Explicitly include an

sampling operator

argminx UFx − y
2

2
+ λ Wx 1



Mathematical formulation

argminx Fx − y
2

2
+ λ Wx 1

Use Lagrangian form

W: Wavelet transform operator

x: reconstructed image

F: Fourier transform operator

y: acquired undersampled k-space data

: regularization parameter


U: k-space sampling pattern
λ

argminx Wx 1
Fx − y

2
< ϵsubject to

Explicitly include an

sampling operator

argminx UFx − y
2

2
+ λ Wx 1

Cost function



Optimization algorithm
• Solving                                     is non-trivial since the cost function is not 

smoothed at Wx=0 

• Different approaches have been used to solve  
• Conjugate gradient descent1 
• ADMM2,3 
• Primal-dual algorithm4 
• …

min UFx − y
2

2
+ λ Wx 1

[1] Lustig et al., Magn Reson Med. 2007;58(6):1182-95 
[2] Wang et al., SIAM J Imag Sci. 2008;1(3):248-72 
[3] Ramani et al., IEEE Trans Med Imaging. 2011;30(3):694-706 
[4] Chambolle et al., J Math Imaging Vision. 2011;40(1):120-45

min UFx − y
2

2
+ λ Wx 1



Optimization algorithm
• Conjugate gradient descent 

From: Lustig et al., MRM 2007

: gradient at kth iteration

: updated image result at kth iteration


TolGrad: stopping criteria

MaxIter: stopping criteria on iterations


, : line search parameters

gk
mk

α β

argminm f(m) = UFm − y
2

2
+ λ Wx 1



Compressed sensing MRI
• Let’s run code to reconstruct images using compressed sensing…              

(see code example 06)

Zero-filled 
Compressed sensing 


reconstruction
Undersampling mask

kx

ky



Compressed sensing MRI
• Compressed sensing MRI can reconstruct an image with high fidelity from 

undersampled k-space data given 
• (1) the image has transform sparsity (or a sparse representation in some 

transform domain) 
• (2) the k-space sampling pattern generates incoherent artifacts in the sparse 

transform domain 
• Compressed sensing MRI usually involves a nonlinear reconstruction method 

to recover the image



Choice of regularization parameters

• Many compressed sensing methods require tuning of regularization parameters. 

• Larger weights on the sparsity term (larger ): 
• Better suppression on noise or artifacts / Improved perceived SNR 
• Features more likely to be over-smoothed / Resulting in images with artificial 

appearance 
• The regularization parameter is dataset-dependent. 
• Methods for automatic regularization parameters selection have been 

investigated.

λ

argminx UFx − y
2

2
+ λ Wx 1



Compressed sensing + Parallel imaging
• Parallel imaging: Use information from multiple coils (e.g., coil sensitivity in 

SENSE reconstruction) 
• Compressed sensing: Use sparsity constraints 

• Combination of these two techniques:

argminx UFSx − y
2

2
+ λ Wx 1

Coil sensitivity maps

Coil combined image

Multi-coil k-space data



• Sampling trajectory: 
• The fully sampled region can be used to estimate coil sensitivity maps 
• The overall sampling scheme needs to generate incoherent under sampling 

artifacts

Compressed sensing + Parallel imaging

kx

ky

kx

ky

kz



Coil compression
• A problem in applying compressed sensing reconstruction in some 

applications is the increased memory requirement and computational 
complexity due to a large number of coils. 

• Coil compression (e.g., singular value decomposition-based technique) can be 
used to reduce the number of coils before compressed sensing reconstruction.

Reference (32 coil elements)
Coil-compressed image


 (6 virtual coils) Error 20x

(Figures from: Zhang et al., MRM 2013 )



Example (1): Knee T2 mapping
• T2 values in the knee cartilage have been used to detect disease and 

treatment changes in articular cartilage. 
• T2 quantification in the knee cartilage can help depict early cartilage 

degeneration. 
• Challenges: Conventional multi-echo spin echo-based sequences are slow

Multi-echo 

spin-echo images

Figure from 

previous lecture slide



Example (1): Knee T2 mapping
• Acceleration strategies 

• (1) Use a faster sequence: DESS (double/dual echo steady state) 
• (2) Use compressed sensing to accelerate

An extension to the gradient-spoiled GRE which

acquires both SSFP-FID and SSFP-Echo

The difference between the two contrasts

can be used to quantify T2 


(figure from Hargreaves et al., JMRI 2012)

Variable density sampling

kx

kz

ky

argminx UFSx − y
2

2
+ λ1( Wxfid

1
+ r Wxecho 1

)

+λ2( Dxfid
1

+ r Dxecho 1
)

Cost function

U: k-space sampling pattern 

F: Fourier transform operator

S: coil sensitivity maps

x: reconstructed image

y: acquired undersampled k-space data

W: Wavelet transform operator

D: total variation operator


: regularization parameters
λ1, λ2



Example (1): Knee T2 mapping
GRAPPA 2


7min 48 sec
Compressed sensing


4min 4sec

FID

image

T2 

map

0ms

120ms

(Figures from: Shih et al., ISMRM 2023 )



Example (1): Knee T2 mapping
• Rapid knee cartilage T2 mapping 

• Constraint: Sparsity in Wavelet transform and sparsity in total variation 

• Data sampling: variable density random sampling 

• Optimization problem:  

• Reconstruction: non-linear conjugate gradient method

argminx UFSx − y
2

2
+ λ1( Wxfid

1
+ r Wxecho 1

) +λ2( Dxfid
1

+ r Dxecho 1
)

U: k-space sampling pattern 

F: Fourier transform operator

S: coil sensitivity maps

x: reconstructed image

y: acquired undersampled k-space data

W: Wavelet transform operator

D: total variation operator


: regularization parameters
λ1, λ2



Example (2): Cardiac cine imaging
• Cardiac cine imaging for information of the heart function throughout the 

cardiac cycle 
• Challenges: accelerating data acquisition without compromising the high 

resolution and image quality requirements

(Figure from: Otazo et al., MRM 2015 )



• Sparsity in the x-f space

Example (2): Cardiac cine imaging

(Figures from: Tsao et al., JMRI 2012 )



Example (2): Cardiac cine imaging

(Figures from: Tsao et al., JMRI 2012  and Jung et al., MRM 2009 )

Fully sampled

6x acceleration 
with zero-padding

k-t FOCUSS results

k-t sampling pattern



Example (2): Cardiac cine imaging
• k-t FOCUSS1 (k-t FOCal Underdetermined System Solver) 

• Application: cardiac cine imaging 

• Constraint: sparsity in the x-f space 

• Data sampling: k-t undersampling 

• Optimization problem:  

• Reconstruction: reweighted quadratic optimization 

minρ y − DFSρ
2

2
+ λ ρ

1

[1] Jung et al., Magn Reson Med. 2009;61(1):103-16

minρ y − DFS(ρ0 + Δρ)
2

2
+ λ Δρ

1

Let ρ = ρ0 + Δρ

y: acquired k-space data

D: k-t sampling pattern 

F: Transform operator between

     k-space and x-f space

S: coil sensitivity maps


: reconstructed x-f space

: regularization parameter


ρ
λ



Example (3): Free-breathing radial MRI
• Radial MRI with inherent motion robustness can be used for free-breathing MRI 
• Radial undersampling results in incoherent artifacts

Linear radial MRI

Golden-angle 

radial MRI

(Figure from: Feng et al., JMRI 2022 )



• Stack-of-radial MRI provides self-navigation to track breathing motion 
• We can group the k-space data into different motion states

Example (3): Free-breathing radial MRI

(Figure from: Feng et al., MRM 2016 )



Example (3): Free-breathing radial MRI

(Figure from: Feng et al., MRM 2016 )



Example (3): Free-breathing radial MRI
• XD-GRASP1 (Golden-angle radial MRI with reconstruction of extra motion-state dimensions 

using compressed sensing) 
• Application: free-breathing abdominal imaging 

• Constraint: temporal finite differences (or total variation) in dynamic dimension    

• Data sampling: undersampled golden-angle radial MRI 

• Optimization problem:  

• Reconstruction: non-linear conjugate gradient

minx FCx − y
2

2
+ λ1 S1x 1

+ λ2 S2x
1

[1] Feng et al., Magn Reson Med. 2016;75(2):775-88



Compressed sensing MRI
• Limitations: 

• Requiring high computational complexity to solve the nonlinear reconstruction 
problem  

• Reconstruction result is dependent on the choice of regularization parameters 
• Reconstruction may fail if the requirements are not met



Compressed sensing MRI
• Conventional compressed sensing MRI requires a pre-determined sparsifying 

transform (e.g., Wavelet transform) for image reconstruction.  
• The assumed sparsity model might not work well in certain applications. 

• Attempts to move beyond this limitation… 
• Dictionary-based compressed sensing MRI: Using a learned dictionary of basis 

functions instead of a specific transform 
• Low-rank based reconstruction: Use the inherent redundancy and low-rank 

properties in (high-dimensional) MRI dataset for reconstruction 
• Deep learning-based reconstruction: Use the information learned from the 

large datasets to reconstruct undersampled MRI data



Take home message
• 3 main components for compressed sensing MRI to work 

• The image has a sparse representation in some transform domain 
• The k-space sampling trajectory generates incoherent artifacts in the sparse 

transform domain 
• It involves a nonlinear reconstruction method



Take home message
• If we want to apply compressed sensing to accelerate an MRI application, check: 
• (1) Can the images be sparsified in a certain (transform) domain? 

• Wavelet transform 
• Spatial total variation in images 
• Total variation in temporal frames 
• x-f space 
• … 

• (2) Can the sampling pattern generate incoherent undersampling artifacts? 
• Variable density sampling pattern 
• Radial acquisition 
• Spiral acquisition 
• …



Thanks!
• Next lecture

• Fast Imaging - Non-Cartesian Sampling by Dr. Wu


• See you next time

• Deep learning MRI Reconstruction on 5/22

Questions?  

Contact: Shu-Fu Shih 

Email: sshih@mednet.ucla.edu


