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Today’s topics

e k-Space properties review

e Compressed sensing MRI (with code examples)
e Sparse representation
e Incoherent artifacts
 Nonlinear reconstruction

e Compressed sensing MRI applications



MRI acceleration

e MRI acquisition time is limited by
e MRI physics (encoding mechanisms, relaxation properties...)
e Hardware constraints (gradient switching...)

e Shorter MRI scan time can
e |mprove patient comfort
e Reduce occurrence of motion artifacts

e (from a hospital’'s view) Increase throughput
with better resource management




MRI acceleration

e Different acceleration strategies:
e (1) Sequence design: Using a rapid acquisition strategy (e.g., EPI and spiral imaging)

e (2) Simultaneous multi-slice (SMS) techniques: Using specialized RF pulses to excite
multiple slices at the same time, followed by advanced reconstruction

e (3) Data undersampling with advanced reconstruction;
e a. Partial Fourier reconstruction: Using conjugate symmetry in k-space
e b. Parallel imaging: Using sensitivity information from multiple colls
e c. Compressed sensing: Using sparsity constraints for reconstruction
 d. Deep learning: Using non-linear neural network trained with large datasets

* (4) Hybrid techniques: Combining different acceleration strategies to achieve robust
acceleration

https://mriquestions.com/echo-planar-imaging.html



MRI acceleration

e Different acceleration strategies:

(1) Sequence design: Using a rapid acquisition strategy .”/ and spiral imaging)
N @ W|II be covered on 5/8 5/20 .

e (2) Simultaneous multi-slice (SMS) techniques: Using specialized RF plsestexmte
multiple slices at the same time, followed by advanced reconstruction

(3) Data undersampling with advanced reconstruction: 22 Already4c/c2>\2/ered

e a. Partial Fourier reconstruction: Using conjugate symmetry in k-space “%

* b. Parallel imaging: Using sensitivity information from multiple coils. d— %2 Already covered
- on 4/24

°* C. Compressed sensmg Usmg spar3|ty Constralnts for reconstructlon | TODAY!

e d. Deep learning: Using non- Llinear neural network trained with Iarge datasets
W & Will be covered on 5/22

(4) Hybrid techniques: Combining different acceleration strategies to achieve robust
acceleration

https://mriquestions.com/echo-planar-imaging.html



MRI acceleration

e Different acceleration strategies:
(1) Sequence design: Using a rapid acquisition strategy (e.g., EPIl and spiral imaging)

(2) Simultaneous multi-slice (SMS) techniques: Using specialized RF pulses to excite
multiple slices at the same time, followed by advanced reconstruction

These techniques all require some prior

information for image reconstruction
(3) Data undersampling with advanced reconstruction: .

e a. Partial Fourier reconstruction: Usmg Conjugate symmetry in k- space .
e b. Parallel imaging: Using sensitivity information from multiple colls |
. * c. Compressed sensing: Using sparsity constraints for reconstruction \‘
:.  d. Deep learning: Using non-linear neural network trained with large datasets

(4) Hybrid techniques: Combining different acceleration strategies to achieve robust
acceleration

https://mriquestions.com/echo-planar-imaging.html



Images with the same

Underdetermined SyStem undersampled k-space data

Fully-sampled Undersampled
(Nyquist criteria fulfilled) (Missing some k-space lines)
Kx Kx

T f

Use prior information about the images to
help us solve the underdetermined problem



Compressed sensing MRI

e Compressed sensing MRI can reconstruct an image with high fidelity from
undersampled k-space data given

* (1) the image has transform sparsity (or a sparse representation in some
transform domain)

e (2) the k-space sampling pattern generates incoherent artifacts in the sparse
transform domain

e Compressed sensing MRI usually involves a nonlinear reconstruction method
to recover the image



Sparse representation

e Many images have a sparse representation in some transform domain

 Example 1: Discrete cosine transform (DCT) U
o JPEG uses DCT for image compression ~ *~ 2, %eos|g(n+3)k

N-1
n=0

fork=0,..N—-1

Compressed image (3.7-fold)
by preserving large DCT coefficients

Original image 2D DCT coefficients

See code example 01



Sparse representation

e Example 2: Wavelet transform
e JPEG 2000 uses Wavelet transform for image compression

Compressed image (5.3-fold)

Original image 2D Wavelet coefiicients by preserving large Wavelet coefficients

m
VY ‘

See code example 02



Sparse representation

e Example 3. Wavelet transform for a brain image

Compressed image (4.8-fold)
by preserving large Wavelet coefficients

Original image 2D Wavelet coefficients

See code example 03



Sparse representation

e Many (MRI) images have a sparse representation in some transform domain
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Sparse representation

e How does this “prior information™ can help in image reconstruction problem?

o When the reconstruction problem is under-determined, the corresponding
artitact-free or fully sampled image that best matches the undersampled
data will more likely be one that has a sparse representation

See code example 04




Incoherent artifacts

e The second requirement for compressed sensing MRI:

 The undersampling pattern should generate incoherent artifacts in the
sparse transform domain

e \What are incoherent artifacts?

* Noise-like or diffuse image artifacts that lack a clear, structured, or
predictable pattern



Incoherent artifacts

e Using the point spread function to analyze
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( Figure from: Lustig et al., MRM 2007 )



Incoherent artifacts

Inverse
Fourier transform Wavelet transform

kK-space domain Wavelet domain

Inverse
Wavelet transform

Fourier transform

Corresponding signal in image domain Sparse signal in Wavelet domain

Images from random undersampling

de example 05




LO, L1 and L2 norm

e \Vector norm: a method to measure the length of a vector

e LOnorm ( || x || ,): number of non-zero entries

o L1 norm (|| x || ): sum of absolute values of the entries

n

lxll, =[x |+ |x|+...+

e L2 norm ( || x || ,): square root of sum of squared values of the entries

2 2
lxll, =1/ x| + 0| +...+

P

n




LO, L1 and L2 nhorm

5 -1
0 2
0 3
V1 = 7 Vy = v
-3 4
0 2

 Two vectors with similar energy (L2 norm) can have different levels of sparsity
(L1 norm)



Exercises

» Suppose we have a 2D vector x = [x;, Xx,]

» Exercise 1: argmin, ||x| \2

A 2x2=x1+2

* Exercise 2 argmin, || x]],
S . t . 2x2 = 1 + 2 - :::‘:‘...’ L ’ *.,:’:‘% ‘ X ‘ + ‘ XZ‘ —n

» Example 3: argmin, ||x]],

A Z.X2:xl+2




Exercises

e |2 norm minimization: Find a solution with smallest energy

e |1 and LO norm minimization: Find a sparse solution



Mathematical formulation

Our goal:

Turn into an
optimization problem

q

Convex relaxation

using L1 norm

q

argmin,

subject to

argmin,

subject to

Find an image that has the sparsest coefficients in the Wavelet domain
and the image is consistent with the undersampled k-space data

| Wx ||
H Fx—y||2<€

W: Wavelet transform operator
X: reconstructed image
F: Fourier transform operator

| | Wx | | y: acquired undersampled k-space data

” Fx—yH2<€



_ _ W: Wavelet transform operator
Mathematical formulation ot
y: acquired undersampled k-space data

A: regularization parameter
U: k-space sampling pattern

argmin, || Wx || 1
subject to H Fx—Yy H <€

Use Lagrangian form

— argmin, H Fx—sz+/l || Wx || 1

Explicitly include an
sampling operator

q argminx H UFX—)’HE_I_/I ” Wx ”1




_ _ W: Wavelet transform operator
Mathematical formulation ot
y: acquired undersampled k-space data

A: regularization parameter
U: k-space sampling pattern

argmin, || Wx || 1
subject to H Fx—Yy H <€

Use Lagrangian form

— argmin, H Fx—y”i+/l || Wx || 1

Explicitly include an
sampling operator

q argminx H UFX—)’HE_I_/I ” Wx ”1

Cost function




Optimization algorithm

o Solving min |[ure—y| +4|well, is non-trivial since the cost function is not
smoothed at Wx=0

e Different approaches have been used to solve min | vre—y | +2 | wxl,
e Conjugate gradient descent!
e ADMM?2.3
* Primal-dual algorithm#

[1] Lustig et al., Magn Reson Med. 2007;58(6):1182-95

[2] Wang et al., SIAM J Imag Sci. 2008;1(3):248-72

[3] Ramani et al., IEEE Trans Med Imaging. 2011;30(3):694-706
[4] Chambolle et al., J Math Imaging Vision. 2011,40(1):120-45



Optimization algorithm
e Conjugate gradient descent

argmin,  fom)="|| UFm—y || ~+2 || wx ||,

% Initialization
k=0;m=0; gy = Vf(mg); Amg = —g
% Iterations

while (||gk||2 < TolGrad and k > maxIter) {
% Backtracking line-search g,: gradient at kt" iteration

t = 1; while (f (mg+tAmyg) > f(11'11<)+0ll‘-38611(gzAmk)) m,: updated image result at kth iteration
{t — 131} TolGrad: stopping criteria

Maxlter: stopping criteria on iterations

a, [: line search parameters

My = My + TAMy
gk+1 = Vf(mg4q)

2
. ||gk+1||2

V= 18k 115
AMy 1 = —Zks1 +yAmy
k=k+1}

From: Lustig et al., MBRM 2007




Compressed sensing MRI

e | et's run code to reconstruct images using compressed sensing...
see code example 06)

Compressed sensing
Zero-filled reconstruction

Undersampling mask




Compressed sensing MRI

e Compressed sensing MRI can reconstruct an image with high fidelity from
undersampled k-space data given

* (1) the image has transform sparsity (or a sparse representation in some
transform domain)

e (2) the k-space sampling pattern generates incoherent artifacts in the sparse
transform domain

e Compressed sensing MRI usually involves a nonlinear reconstruction method
to recover the image



Choice of regularization parameters

argmin, ” UFx —y H i+ A || Wx || 1

e Many compressed sensing methods require tuning of regularization parameters.

e Larger weights on the sparsity term (larger A):
e Better suppression on noise or artifacts / Improved perceived SNR

 Features more likely to be over-smoothed / Resulting in images with artificial
appearance

 The regularization parameter is dataset-dependent.

e Methods for automatic regularization parameters selection have been
Investigated.



Compressed sensing + Parallel imaging

e Parallel imaging: Use information from multiple colils (e.g., coil sensitivity in
SENSE reconstruction)

e Compressed sensing: Use sparsity constraints

e Combination of these two techniques:

Coil sensitivity maps

, L
argmin, | UFSx —y || . + /1 H Wx H |

I

Coil combined image

Multi-coll k-space data



imaging

Parallel

ing +

Compressed sens

e Sampling trajectory

 The fully sampled region can be used to estimate coil sensitivity maps

 The overall sampling scheme needs to generate incoherent under sampling

artifacts
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Coil compression

e A problem in applying compressed sensing reconstruction in some

applications is the increased memory requirement and computational
complexity due to a large number of coills.

e Coll compression (e.g., singular value decomposition-based technique) can be
used to reduce the number of coils before compressed sensing reconstruction.

Coil-compressed image
(6 virtual coils) Error 20x

Reference (32 coil elements)

(Figures from: Zhang et al., MRM 2013 )



Example (1): Knee T2 mapping

T2 values in the knee cartilage have been used to detect disease and
treatment changes in articular cartilage.

e T2 quantification in the knee cartilage can help depict early cartilage

degeneration.

 Challenges: Conventional multi-echo spin echo-based sequences are slow

spin-echo images

Multi-echo Spin Echo

90c 180¢ 180° 180°

Inimainain

TR

SE1 SE> SE;

Can perform T2 mapping.

Figure from
previous lecture slide



Example (1): Knee T2 mapping

* Acceleration strategies
(1) Use a faster sequence: DESS (double/dual echo steady state)

e (2) Use compressed sensing to accelerate

Variable density sampling

U: k-space sampling pattern

F: Fourier transform operator

S: coil sensitivity maps

X: reconstructed image

y: acquired undersampled k-space data
W: Wavelet transform operator

D: total variation operator

Ay, Ay regularization parameters

An extension to the gradient-spoiled GRE which
acquires both SSFP-FID and SSFP-Echo

Double Echo (DESS or FADE) Sequence

-\

“Spoiler

Gradient

Spoiler
Gradient

Cost function

)

‘ UFS)C—y H z_l'/ll( || foid || 1+ r H ercho

argmin,
|
The difference between the two contrasts
can be used to quantify T»
(figure from Hargreaves et al., JMRI 2012) +/12( || Dxfid || | T7 H Dxecho 1)




mapping

Compressed sensing

Knee T>2

Example (1)
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(Figures from



Example (1): Knee T2 mapping

 Rapid knee cartilage T2 mapping

o Constraint. Sparsity in Wavelet transform and sparsity in total variation
e Data sampling: variable density random sampling

)

1

echo

* Optimization problem: argmin, || vrsx-y || >+ i | W

1) 4_22( H l)xﬁd H 1-+-F H l)xécho

‘ +rHWx
1

 Reconstruction: non-linear conjugate gradient method | J: k-space sampling pattern

F: Fourier transform operator

S: coil sensitivity maps

X: reconstructed image

y: acquired undersampled k-space data
W: Wavelet transform operator

D: total variation operator

Ay, A»: regularization parameters




Example (2): Cardiac cine imaging

e Cardiac cine imaging for information of the heart function throughout the
cardiac cycle

 Challenges: accelerating data acquisition without compromising the high
resolution and image quality requirements

P

& &8

(Figure from: Otazo et al., MRM 2015 )



Example (2): Cardiac cine imaging

e Sparsity in the x-f space

(Figures from: Tsao et al., JMRI 2012 )



Example (2): Cardiac cine imaging

k-t sampling pattern
Fully sampled
Raw Data
6x acceleration f- : s
with zero-padding = wij
’ ’ ; *.’

frame

k-t FOCUSS results

(Figures from: Tsao et al., JMRI 2012 and Jung et al., MRM 2009 )



Example (2): Cardiac cine imaging

e k-t FOCUSS! (k-t FOCal Underdetermined System Solver)
+ Application: cardiac cine imaging D e

K-space and x-f space
S: coil sensitivity maps
p: reconstructed x-f space

° M SparSity in the X'f Space A: regularization parameter

e Data sampling: k-t undersampling

» Optimization problem: min, | y—DFsp || +2 | | B

min, H y — DFS(py + Ap) H z+/1 H Ap H 1
o Reconstruction: reweighted quadratic optimization

[1] Jung et al., Magn Reson Med. 2009;617(1):103-16



Example (3): Free-breathing radial MRI

e Radial MRI with inherent motion robustness can be used for free-breathing MRI
e Radial undersampling results in incoherent artifacts

Linear radial MRl

Golden-angle
radial MRI

(Figure from: Feng et al., JMRI 2022 )



Example (3): Free-breathing radial MRI

o Stack-of-radial MRI provides self-navigation to track breathing motion
 \We can group the k-space data into different motion states

End-Expiration
Motion State 1 ! v NN A A ‘ ., | ‘ f | p

”W"””" :

Respiratory Positi

------------------------------------------- End Insplratlon

N Spokes N Spokes

(Figure from: Feng et al., MRM 2016 )



Example (3): Free-breathing radial MRI

XD-GRASP
Motion Average Motion State 1 Motion State4 Motion State 6

(Figure from: Feng et al., MRM 2016 )



Example (3): Free-breathing radial MRI

e XD-GRASP? (Golden-angle radial MRI with reconstruction of extra motion-state dimensions
using compressed sensing)

o Application: free-breathing abdominal imaging

o Constraint. temporal finite differences (or total variation) in dynamic dimension
e Data sampling: undersampled golden-angle radial MRI

» Optimization problem: min, || FCx—y || 2+/11 || S || i || S, x || |

e Reconstruction: non-linear conjugate gradient

[1] Feng et al., Magn Reson Med. 2016;75(2):775-88



Compressed sensing MRI

e Limitations:

 Requiring high computational complexity to solve the nonlinear reconstruction
problem

 Reconstruction result is dependent on the choice of regularization parameters
e Reconstruction may fall if the requirements are not met



Compressed sensing MRI

e Conventional compressed sensing MRI requires a pre-determined sparsifying
transform (e.g., Wavelet transform) for image reconstruction.

e The assumed sparsity model might not work well in certain applications.

o Attempts to move beyond this limitation...

e Dictionary-based compressed sensing MRI: Using a learned dictionary of basis
functions instead of a specific transform

e | ow-rank based reconstruction: Use the inherent redundancy and low-rank
properties in (high-dimensional) MRI| dataset for reconstruction

e Deep learning-based reconstruction: Use the information learned from the
large datasets to reconstruct undersampled MRI data



Take home message

e 3 main components for compressed sensing MRI to work
e The image has a sparse representation in some transform domain

 The k-space sampling trajectory generates incoherent artifacts in the sparse
transform domain

e |t involves a nonlinear reconstruction method



Take home message

e |f we want to apply compressed sensing to accelerate an MRI application, check:
e (1) Can the images be sparsified in a certain (transform) domain?

e \Wavelet transform

e Spatial total variation in images

e Total variation in temporal frames

e X-f space
e (2) Can the sampling pattern generate incoherent undersampling artifacts?

e Variable density sampling pattern

e Radial acquisition

e Spiral acquisition



Thanks!

* Next lecture
* Fast Imaging - Non-Cartesian Sampling by Dr. Wu

* See you next time
* Deep learning MRI Reconstruction on 5/22

Questions?
Contact: Shu-Fu Shih

Email: sshih@mednet.ucla.edu



