Project Discussion

M229 Advanced Topics in MRI Holden H. Wu, Ph.D. 2025.05.01

Department of Radiological Sciences David Geffen School of Medicine at UCLA

Homework Sets

- Homework 1 solutions
- Homework 2 solutions

MRI Research

Technical Developments

Physics Contrast mechanisms Mathematical models Hardware Data acquisition Data reconstruction Data processing Quantitative analysis Data integration Software

Clinical Applications

Anatomical imaging Functional imaging Multi-modal imaging Quantitative imaging

for Diagnosis / screening Treatment planning Procedural guidance Treatment assessment Monitoring

Course Topics

- Pulse Sequences
- RF Pulse Design
- Fast Imaging Trajectories
- Parallel Imaging
- Compressed Sensing
- Deep Learning Recon

- Motion in MRI
- Fat-Water Imaging
- Susceptibility Imaging
- Advanced Applications

Final Project

- ~5 weeks; start thinking now!
 - Discuss with Holden
- Can be your own research
 - Incorporate course topics
- Can be from list of ideas
 - Can combine several ideas
- Components
 - Proposal (1 page), due 5/9 Fri by 5 pm
 - Abstract (1 page), due 6/6 Fri by 5 pm
 - Presentation + Q&A, 6/10 and 6/12

- Pulse sequences
 - bSSFP catalyzation
 - bSSFP banding artifact reduction
 - Design of variable flip-angle TSE
 - Simulation of diffusion-weighted SSFP
 - RF + seq simulator (Bloch, EPG)
 - MR fingerprinting
 - Motion and flow encoding
 - Gradient waveform optimization

• RF pulse design

- Low SAR / wide bandwidth adiabatic pulse
- Velocity selective RF pulse
- 2D excitation RF pulse
- Spectral-2D spatial pulse design (e.g., fat suppression + 2D excitation)
- Low SAR multi-band RF pulse (e.g., for simultaneous multi-slice imaging)

• Fast imaging

- Trajectory design (EPI, spiral, etc.)
- Gradient waveform optimization
- Fast 3D re/gridding (or nuFFT) recon
- Gradient measurement / calibration
- Off-resonance correction
- Motion compensation
 - Self navigation
 - Model-based reconstruction

Image reconstruction

- Coil combination (preserve phase, etc.)
- Parallel imaging (e.g., GRAPPA vs. SENSE)
- Sparsity and low-rank constraints
- k-t methods
- Image analysis
 - Measure/reduce geometric distortion in DWI
 - B₁+ mapping with improved spatial interpolation
 - Denoising
 - Multi-component tissue signal modeling

• Deep learning / machine learning

- Image enhancement / reconstruction
- Super-resolution MRI
- Motion compensation
- Quantitative parameter fitting
- Texture analysis for multi-parametric MRI
- Prediction models for disease diagnosis
- Image segmentation
- Image registration
- Contrast synthesis

Quantitative imaging

- Relaxometry (T₁, T₂, T₂* mapping)
- Diffusion
- Perfusion
- Fat/water
- Temperature
- Tissue stiffness
- Acquisition and signal modeling/fitting

Final Project

- Proposal due 5/9 Fri by email
 - Template on course webpage
 - Scope should be feasible in 4-5 weeks
- Titles of past projects listed in Lecture 1
- Ask about public datasets
- Come to office hours!
 - Email to make an appointment

Thanks!

Holden H. Wu, Ph.D. <u>HoldenWu@mednet.ucla.edu</u> http://mrrl.ucla.edu/wulab