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e Background

e Volumetric Imaging by 2D Multi-Slice Imaging
* Break

* Volumetric Imaging by 3D Imaging
* One Step Further: Multi-Dimensional imaging

* Only a brief overview of volumetric imaging and
associated acceleration techniques

* More fast imaging and acceleration technical details
to be covered by Dr. Anthony Christodoulou

il

* For lecture feedback



e Background



Volumetric Imaging

Why?

e Organs are three-dimensional (3D)

* Imaging modalities allow us to perform volumetric imaging
e Ultrasound
 Computer tomography (CT)
* Magnetic resonance imaging (MRI)

e Typical reasons or situation why we might not prefer volumetric imaging

* Not easy to acquire, i.e. requiring more knowledge and experience for the operators
* Radiation dosage

* Long acquisition time



Volumetric MR Imaging

Common in MR Applications

* No concerns about radiation dosage in MRI

* Volumetric imaging is very common in clinical MRI
applications for anatomy and function evaluation of organs
e 2D multi-slice imaging

* Cardiac: Short-axis and long-axis multi-slice evaluation (balanced SSFP, GRE),
etc.

e MSK: Multi-slice T1-, T2- and PD-weighted images (TSE), etc.
* Neuro: Multi-slice diffusion (EPI), etc.
* Body: Multi-slice diffusion (EPI), etc.
* 3D imaging
* Neuro: T1-weighted images (MPRAGE), etc.
* Body: T1-weighted images (VIBE), etc.




Volumetric MR Imaging

Easier than 2D to Acquire

e 2D cine imaging in clinical workflow

* Multi-slice and multi-orientation prescription
is challenging for inexperienced operators

Normal
» Often needs expert and interactive ackla
supervision from physicians
. * Video courtesy of Jamil Aboulhosn, MD.
* Advantages of volumetric whole-heart e Dextro-Transposition of
Tetralogy of Fallot the Great Arteries (d-TGA)

imaging!®
* Easy imaging volume prescription
* |sotropic voxel resolution
* Flexibility for multiplanar reformatting
* Higher SNR compared to 2D

1. Cruz et al. MRM 2017;77:1894-1908. 2. Holst et al. MRI 2017 Nov;43:48-55.
3. Kiistner et al. NMR Biomed 2021;34:e4409. 4. Nguyen et al. Radiology 2021;300:162-173. Heart illustrations courtesy of Centers for Disease Control and Prevention,
5. Bonanno et al. NMR Biomed 2021;34:e4589. 6. Braunstorfer et al. MRI 2022;94:64-72. National Center on Birth Defects and Developmental Disabilities.



Volumetric MR Imaging

What about Acquisition Time?

* A critical question

 Solution: Acceleration techniques

e Parallel imaging => Also fundamental to 2D multi-slice imaging
* GRAPPA
* CAIPI

* Compressed sensing
* Deep learning

 We will talk more in detail later



* Background
e Volumetric Imaging by 2D Multi-Slice Imaging
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* Very straightforward and easy to implement

* Not efficient
e Usually, TR (hundreds of ms or even seconds) much larger than TE (100 ms or shorter)
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* The most commonly used multi-slice acquisition mode

* This can potentially accelerate the total acquisition by a factor of TR/TE



* Main disadvantage
* Needs high-quality slice profile for the slice excitation
* Otherwise slice crosstalk (overlapping) may exist

* Possible solutions to avoid slice crosstalk
e Use larger slice gap (> 3mm)
* Acquire odd- and even-indexed slices in two acquisitions

Larger slice gap Odd indexed slices Even indexed slices




* Hadamard encoding RF1(0) = sinc(a) cos(@, b
* Avoid slice crosstalk via slice encoding and decoding

REQ —sinca)e

1 ] cos modulation

—1 | sin modulation
RF2(t) = - sinc(at) sin(O)o t)

The 1st acquisition




* Hadamard encoding RF1(0) = sinc(a) cos(@, b
* Avoid slice crosstalk via slice encoding and decoding

REQ —sinca)e

1 ] cos modulation

—1 | sin modulation
RF2(t) = - sinc(at) sin(O)o t)

* No time penalty only when averaging is used anyway

A 2nd acquisition
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* Further accelerate the acquisition by the number of simultaneously acquired slices (when
TR is sufficiently large)

* Key innovations
* Leveraging multi-coil sensitivity, especially in the slice direction, enabled this
* Parallel imaging reconstruction to disentangle adjacent slices



Slice Excitation

Single Slice Selection
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* [llustration courtesy of Deqgiang Qiu, PhD.



SMS RF Pulse

Multi-Slice Excitation
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* [llustration courtesy of Deqgiang Qiu, PhD.



SMS RF Pulse

A Simple Method of Creating SMS RF Pulse for Excitation

* Start with a single-band RF pulse s (t) with the frequency spectrum of §; (f)

 Shift the frequency spectrum to a different center frequency v, then

s2(t) = F715,(f —v) = s1(£)e?™"
* Then sum them up: g(t) = s.(t) + s,

51(1)

VAN

(t)
ST

Shift the frequency
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SMS Data Reconstruction

GRAPPA

* Left -> right: k-space data of the concatenated slices are undersampled by 2x and reconstructed with the
inverse DFTto produce the aliased multi-slice image

e Right -> left:
* k-space data of the acquired aliased multi-slice image are viewed as a 2x undersampled dataset
* A GRAPPA kernel is trained on concatenated reference images (acquired one slice at a time)

* GRAPPA kernel is applied to undersampled k-space data to generate the full k-space which can be converted to an
unaliased, but concatenated, image of the slices

Concatenated Fully sampled 2x undersampled
i e Kpace SENSE/GRAPPA: kernel fitting
\ e O — multi-slice
delete ... iDFT Image
apply N\
LU T
W e

Setsompop et al. Mag Reson Med 2012;67:1210-1224.



Setsompop et al. Mag Reson Med 2012;67:1210-1224.



SMS Data Reconstruction

Slice-GRAPPA

* GRAPPA kernels are fit using data acquired from
separately excited single-slice data (calibration)

L Bx By
by,b
Sj,z(kx, ky) = Y: y: y: nj,z,ey St collapse

¢=1 by=—By by=—B,
x (kx — byAky, ky — byAky).

* Two kernel sets are applied directly to the k-space

data of the collapsed images to generate each of the
two imaging slices

e Better than in-plane GRAPPA when using advanced
techniques (FOV shift)

Setsompop et al. Mag Reson Med 2012;67:1210-1224.

Collapsed acquired data

Kernel set 1

measured

estimated

Estimatedslice 1




Break time (10 minutes)



* Background

* Volumetric Imaging by 2D Multi-Slice Imaging
* Break

* Volumetric Imaging by 3D Imaging
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3D Volumetric Imaging

Typical Reconstruction of Cartesian Data

» Perfectly described by the 3D DFT

s(t) = j j j m(x,y,Z)e—i27th(t)xe—i27tky(t)ye—ianZ(t)zdxdde

Xy z

= M(ky(t), ky(0), k(1))

where
0 = o [ Ge(orar
ky(6) =5 jo 6, (1)
o = | 6.0

* Typically, 3D DFT is performed to reconstruct the images from k-space data

* It can start from any dimension, x, y, or z. Gives practical convenience
e Can leverage the Fourier Transform theory for algorithm development, etc
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» Reconstruction
= Regridding
= Stack-of-star k-space -> 3D Cartesian k-space

» Other comprehensive steps need to be incorporated
= Off-resonance correction
= Density compensation

» Finally, a DFT converts the 3D Cartesian k-space to 3D images

» Popular alternative: Nonuniform fast Fourier transform (NUFFT)
= Open-source code at https://web.eecs.umich.edu/~fessler/code/

1. Fessler et al. IEEE transactions on signal processing 2003;51:560-574.



A Useful Property for 3D Radial Imaging

3D Central Section Theorem

* The FT of 1D planar-integral projection at an orientation is equal to the 3D FT of the
object along the radial line at that same orientation

"k
Mikyok k) 2 f

* Nishimura, Principles of Magnetic Resonance Imaging.



Volumetric MR Imaging

What about Acquisition Time?

* Solution: Acceleration techniques

* Parallel imaging => Also fundamental to 2D multi-slice imaging
* GRAPPA
* CAIPI

* Compressed sensing

e Al -> Not in technical detail in this presentation



MR Data Sampling
Fully Sampled Acqu
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Acquisition Acceleration by Parallel Imaging

Undersampling k-Space

Conventional, Ry = 2

artition ) _
p_(.lbg) transversal view sagittal view

¢ '#Q b##ttt##*

..and there‘ll be
aliasing.

F. Breuer et al.,
Magn Reson Med 55 (2006)

Conventional, Rz = 2



Acquisition Acceleration by Parallel Imaging

From GRAPPA to CAIPIRINHA

GeneRalized Autocalibrating Controlled Aliasing In Parallel Imaging
Partially Parallel Acquisitions Results IN Higher Acceleration
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M. Griswold et al., Magn Reson Med 47 (2002) * ACS: Auto Calibration Signal



Acquisition Acceleration by Undersampling k-Space

CAIPIRINHA: Accelerate in Two Directions Simultaneously...

partition (k)  Conventional, Rz = 2 as start point
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F. Breuer et al., Magn Reson Med 55 (2006)



Acquisition Acceleration by Undersampling k-Space

CAIPIRINHA: Accelerate in Two Directions Simultaneously...

15t number: PE accel, 2"9 number: SS accel, 3™ number: delta kz shift

Overall acceleration factor = 3
CAIPIRINHA sampling pattern 132

Body array » kz
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Deshpande et al, ISMRM (2012)



210 310 131 132

220 221 320 321

* Only body coil was used <

Deshpande et al, ISMRM (2012)



g-maps g-maps

Deshpande et al, ISMRM (2012)



Conventional VIBE, acc factor 2 CAIPIRINHA VIBE, acc factor 4
21-24s TA 12s TA
320 Matrix, 3mm 320 Matrix, 3mm



Acquisition Acceleration by Parallel Imaging
From Parallel Imaging to Compressed Sensing (CS)

Lustig, et al. IEEE signal processing magazine 2008;25:72-82.



Acquisition Acceleration by Compressed Sensing (CS)

Principle - Sparsity

Wavelet Compressed (x10)

* Transform sparsity of MR images

* Different sparsifying transforms can be used

» Several largest coefficients are preserved
while all others are set to zero

Angiogram Finite Differences Compressed (x20)

<
a

Dynamlc Heart Temporal Frequency = Compressed (x20

-mam R

Lustig, et al. IEEE signal processing magazine 2008;25:72-82.



Acquisition Acceleration by Compressed Sensing (CS)

Principle - Interference Cancellation

 Random undersampling can help recover highly accelerated data acquisition
* Nonlinear iterative techniques are usually performed
* With the knowledge of the k -space sampling scheme and underlying original signal

[\ /‘\ Recovery

i

Sampling

Ambiguity!

(d)

Lustig, et al. IEEE signal processing magazine 2008;25:72-82.
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Lustig, et al. IEEE signal processing magazine 2008;25:72-82.



Acquisition Acceleration by Compressed Sensing (CS)

Principle — Reconstruction

e Reconstruction of the CS data is essentially an optimization problem

minimize |[¥m||;
s.t. || Fsm—yll2 <e€

m is the reconstructed complex image
W is the linear operator of the sparsifying transform
Fs is the undersampled Fourier transform (e.g. NUFFT)

y is the acquired k-space data
€ is the fidelity weighting parameter (roughly the expected noise level)

lx|l1 = 2; |x;| is the £ norm

* A package called BART for CS MRI recon is available at https://mrirecon.github.io/bart/

Lustig, et al. IEEE signal processing magazine 2008;25:72-82.



* Background

* Volumetric Imaging by 2D Multi-Slice Imaging
* Break

* Volumetric Imaging by 3D Imaging

* One Step Further: Multi-Dimensional imaging



Multi-Dimensional Imaging

3D (volumetric)
4D

* 3D + cardiac motion
* 3D + respiratory motion
e 2D + cardiac motion + respiratory motion

5D

* 3D + cardiac motion + respiratory motion

ND

» 2D/3D spatial dimensions + cardiac/ respiratory motion dimensions + physiological
measurement dimensions

Other combinations possible



* Low resolution image navigation (iNAV)!
* Incoherent Cartesian sampling pattern?

* Non-rigid motion-compensated
iterative reconstruction3

1. Henningsson et al. MRM 2012;67:437-445.
2. Prieto et al. JMRI 2015;41:738-746.
3. Cruz et al. MRM 2017;77:1894-1908

* Courtesy of Kim-Lien Nguyen, MD, University of California, Los Angeles.



Whole Liver Imaging (3D)

Motion-Compensated Radial GRE Dixon for Fat/R2" Quantification

The 2nd echo The 6th echo

A 2-Year-Old Patient Ungated

free-breathing
stack-of-radial
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1. Zhong et al. JMRI 2021;53:118-129.
2. Grimm et al. ISMRM 2012. p598.

3. Grimm et al. ISMRM 2013. p3749.



Current method Proposed method

Multi-dimensional regularization (XD-GRASP variant)
101 views, equiv acq time ~40s

Soft-gating 40%
404 views, acq time: 2:34

* Compatible with quantitative imaging

Current method Proposed method
Free-breathing Free-breathing Free-breathing
404 radial views 404 radial views 101 radial views
Average Stable40 4-bin XD-GRASP
Spatial+motion-state reg.
a=7e-5, =80
150.0
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B . . Racan ol o I 309 Fo-sE- - Hgh———- 274 13% g L) S | a3 33.6
£ -50.0 i ' ] ¢
a
Soft-gating 40% = State 4 -100.0
H H : ~ N -150.0 v T r r .
101 views, equiv acq time ~40s 0.0 100.0 200.0 3000 0.0 100.0 2000 3000 0.0 100.0 200.0 300.0
Average (s) Average (s) Average (s™)
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< 200 1
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0.0 10.0 20.0 30.0 40.0 0.0 10.0 20.0 30.0 40.0 0.0 10.0 20.0 30.0 40.0
Average (%) Average (%) Average (%)

* Data from 6 clinical subjects and 5 healthy subjects.

1. Zhong et al. Mag Reson Med 2024;92:1149-1161.



Whole Liver Imaging (3D)

Acceleration Using GAN Networks

A generative adversarial network (GAN)
to accelerate radial whole liver imaging'-2

* Image to image network: Easy to implement
and train

* Focused on magnitude images

Input Output
64x64x64x2

64+128 64 64 1 ©4x6ax64
Generator

i

128+256 128 '

(B8

128 256 256+512 256 I

l»l»,ﬁﬂtﬁ”

+ Concatenation
© Conv (3x3x3), LeakyRelLU
® Conv (1x1x1)

¥ Max pooling (2x2x2)

# Upsampling (2x2x2)

5x Acceleration

5x Acceleration

5x Acceleration

Reference Input U-Net GAN 1

1. Gao et al. MRI 2023;95:70-79.
2. Hu et al. Full patent US20220381861A1, 2022.

FC layer
256 neurons
.. Dropout (0.5) + LeakyReLU E nd

References Discriminator Flatten
64x64x64 Vv  Avg-Pool

’7 Avg-Pool Avg-Pool
-

3DConv+ 3DConv+ 3DConv+ 3DConv+ 3D Conv+

LeakyReLU LeakyReLU LeakyRelU LeakyRelU LeakyRelU
32 kernels 48 kernels 48 kernels 64 kernels 64 kernels




Whole Liver Imaging (3D)

Acceleration Using Transformer Networks

A k-space to k-space transformer _
Preprocessing Output
< =
111.25°

®
» Requires relatively less data for L neforme

training compared to image to image

NUFFT &
coil combine

Undersampled golden-angle Output  Fully-sampled golden-angle
networks' radial k-space radial  radial k-space
) spokes
« Enforces k-space data consistency*° Proctionowews | (orange)
e Add & Norm j |1 — 4x Acceleration 4x Acceleration
“xs Reference U-Net Transformer
'_ PSNR=35.78 PSNR=36.60
e | SSIM=0.81 SSIM=0.90
Multi-Head
™ Attention g
~ Add & Norm E,_
5 Feed Forward )
1. Gao et al. MICCAI 2022. Lecture Notes in Computer Hirrt Add & Norm 7
Science, vol 13436. & MumlH:;: Mr:jlliis—ll:eedad
2. Gao et al. Full patent US20230342993A1, 2023. Attention Attention
3. Vaswani et al. Adv Neural Inf Process Syst 2017;5998- _ _\ _ /
6008. e —4 G Cotr
4. Hyun et al. Physics in Medicine & Biology brojection Inputs _ Projection Outputs
2018;63:135007. (shifted right)

5. Yang et al. IEEE transactions on medical imaging
2017;37:1310-1321.



* High resolution
steady-state
imaging with
contrast
enhancement?

* Double gating:
ECG +
respiratory

1. Han et al. MRM 2015;74:1042-1049.

* Courtesy of Paul Finn, MD, University of California, Los Angeles.

10-Year-Old Patient




* 4D + 3D velocity encoding
* Double gating: ECG + respiratory navigator

- P \
L :

10-Year-Old
Patient

B

il

* Courtesy of Paul Finn, MD, University of California, Los Angeles.



Multi-Dimensional Strain Imaging
4D (3D Spatial + Time) Displacement-Encoding (DENSE) Data

« Short-axis view reconstructed online directly

Magnitude image Phase image encoded in  Phase image encoded in Phase image encoded in
horizontal direction vertical direction through-plane direction

» Long-axis view reformatted offline from short-axis data

Magnitude image Phase image encoded in Phase image encoded in Phase image encoded in
1. Zhong et al. MRM 2010; 64:1089-109. horizontal direction  through-plane direction vertical direction
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1. Auger et al. JCMR 2012;14:4.
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Summary

Volumetric imaging is important for various MRI applications in different organs

Volumetric imaging can be accomplished by
= (Simultaneous) multi-slice 2D imaging
= Volumetric 3D imaging

Acceleration techniques are crucial for both the data acquisition and reconstruction
= Parallel imaging

= Compressed sensing
= Al

Many potential applications
= CV

= Neuro

= Body

* For lecture feedbac
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