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Lecture goals

Goals for today:
• Review and build upon image reconstruction methods you have previously seen

• (Fourier reconstruction, parallel imaging)

• Introduce formal principles of image reconstruction
• Conditions for solution existence
• Uniqueness of solutions
• Probabilistic interpretations of data and images

• Increase understanding of advanced techniques (e.g., compressed sensing)



Continuous domain image reconstruction
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Inverse problem view

input image measured
signal

Encoding

Forward problem: what is signal given input?
Inverse problem: what was input given signal?



Inverse problem view

input image measured
signal

Encoding

Reconstruction
(Decoding)

Forward problem: what is signal given input?
Inverse problem: what was input given signal?



Inverse problem view

input image
𝐼𝐼 𝑟𝑟

signal
𝑆𝑆 𝑘𝑘

Encoding transform
𝒯𝒯 ⋅

Forward problem: 𝒯𝒯 𝐼𝐼 = ?
Inverse problem: 𝒯𝒯 ? = 𝑑𝑑

Reconstruction operator 
𝒯𝒯−1 ⋅  

? = 𝒯𝒯−1 𝑑𝑑



Going from arithmetic to algebra

× 3

Forward problem: 3 2 = ?
                      Inverse problem: 3𝑥𝑥 = 6

𝑥𝑥 = 6 ÷ 3 = 2

2 6

÷ 3 



Inverse problem view

Can we do this in MRI?

input image
𝐼𝐼 𝑟𝑟

measured signal
𝑆𝑆 𝑘𝑘

𝒯𝒯 ⋅

• Measured within finite window



Inverse problem view

Can we do this in MRI?

An inverse function 𝒯𝒯−1 ⋅  doesn’t always exist!

input image
𝐼𝐼 𝑟𝑟

measured signal
𝑆𝑆 𝑘𝑘

𝒯𝒯 ⋅
=

ℱ ⋅ rect 𝑘𝑘

• Measured within finite window
• (Full k-space)×(rect function)
• rect function has zeroes!

0𝑥𝑥 = 0
                        𝑥𝑥 = 0 ÷ 0

cannot recover original 𝑥𝑥



Inverse problem view

input image
𝐼𝐼 𝑥𝑥, 𝑦𝑦

measured signal
𝑆𝑆 𝑘𝑘

𝒯𝒯 ⋅
=

ℱ ⋅ rect 𝑘𝑘

Reconstruction operator

reconstructed image
𝐼𝐼 𝑟𝑟 = 𝐼𝐼 𝑟𝑟 ∗ sinc(𝑟𝑟)



Feasible solution

Encoding: 𝒯𝒯 𝐼𝐼  → 𝑆𝑆
Reconstruction: 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑆𝑆 → 𝐼𝐼

What if you re-encode 𝐼𝐼? What does 𝒯𝒯 𝐼𝐼  equal?



Feasible solution

Fourier encoding: ℱ 𝐼𝐼 ⋅ rect → 𝑆𝑆
Fourier reconstruction: ℱ−1 𝑆𝑆 → 𝐼𝐼 = 𝐼𝐼 ∗ sinc

What if you re-encode 𝐼𝐼? What does 𝒯𝒯 𝐼𝐼  equal?
𝒯𝒯 𝐼𝐼 = 𝒯𝒯 𝐼𝐼 ∗ sinc = ℱ 𝐼𝐼 ∗ sinc ⋅ rect = ℱ 𝐼𝐼 ⋅ rect = 𝑆𝑆

Our reconstruction 𝐼𝐼 did not recover the original image 𝐼𝐼,

but 𝐼𝐼 is exactly consistent with the measured signal: 𝒯𝒯 𝐼𝐼 = 𝑆𝑆

𝐼𝐼 𝑟𝑟  is a feasible solution



Image reconstruction objectives

Objective of feasible image reconstruction:
•Reconstruct an image which is consistent with the data

More formally:
•Find an image 𝐼𝐼 such that 𝒯𝒯 𝐼𝐼 = 𝑆𝑆



Feasible solution(s)

How many images satisfy 𝒯𝒯 𝐼𝐼 = 𝑆𝑆?
• Infinite! We can put anything outside our measured region and retain feasibility

Before sampling Zero-filled Constant-filled Tiled (periodic)



Feasible solution

How many images satisfy 𝒯𝒯 𝐼𝐼 = 𝑆𝑆?
• Infinite! We can put anything outside our measured region and retain feasibility

In the continuous domain,
feasible solution is not unique

However! Some feasible solutions are “better” than others
•The solution assuming zeros outside measured region is the

minimum norm solution



Image reconstruction objectives
Objective of feasible image reconstruction:
• Find an image 𝐼𝐼 such that 𝒯𝒯 𝐼𝐼 = 𝑆𝑆

With infinite solutions, we need a second objective as well, e.g.

• Of all the images 𝐼𝐼 such that 𝒯𝒯 𝐼𝐼 = 𝑆𝑆, choose the one with minimum norm 𝐼𝐼 𝑟𝑟 = ∫ 𝐼𝐼 𝑟𝑟 2 𝑑𝑑𝑟𝑟

• In other words, pick the “smallest” solution

𝐼𝐼 = arg min
𝐼𝐼

𝐼𝐼  s. t.  𝒯𝒯 𝐼𝐼 = 𝑆𝑆

“Solution = argument 𝐼𝐼 which minimizes 𝐼𝐼  such that 𝒯𝒯 𝐼𝐼 = 𝑆𝑆”

i.e, keep the data you measured and fill the unknown values with zeros!



Feasibility is not everything! (e.g., ringing)
Sometimes a second objective is important
• Additional information/additional goal (e.g., minimize ringing)

Before sampling Feasible,
minimum-norm

Hamming windowed
by 𝑤𝑤 𝑘𝑘

𝒯𝒯 𝐼𝐼 𝑟𝑟 = 𝑆𝑆 𝑘𝑘 𝒯𝒯 𝐼𝐼 𝑟𝑟 = 𝑤𝑤 𝑘𝑘 𝑆𝑆 𝑘𝑘



Feasibility is not everything! (e.g., noise)
Data are corrupted by noise
• “Perfect” noiseless reconstruction is not “feasible”

                                    𝒯𝒯 𝐼𝐼 + 𝑁𝑁 = 𝑆𝑆,        where 𝑁𝑁 is noise distributed according to 𝒩𝒩 0, 𝜎𝜎2

                                    𝑆𝑆 − 𝒯𝒯 𝐼𝐼 = 𝑁𝑁

Can modify data consistency objective

• Noiseless: Find an image 𝐼𝐼 such that 𝒯𝒯 𝐼𝐼 = 𝑆𝑆

• Noisy: Find an image 𝐼𝐼 which minimizes 𝑆𝑆 − 𝒯𝒯 𝐼𝐼 2 = 𝑁𝑁 2

◦ Has maximum likelihood interpretation for additive white Gaussian noise (AWGN)

𝐼𝐼 = arg min
𝐼𝐼

𝑆𝑆 − 𝒯𝒯 𝐼𝐼 2

“Least-squares solution”. This will still produce a feasible solution if one exists!



Maximum likelihood interpretation

 ℒ 𝐼𝐼 𝑆𝑆 = 𝑝𝑝 𝑆𝑆|𝐼𝐼 = �
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Each measured data point is a Gaussian RV:

Likelihood (probability of signal given image):

Maximum likelihood:

Maximum log-likelihood:
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2𝜎𝜎2𝑆𝑆~𝒩𝒩 𝒯𝒯 𝐼𝐼 , 𝜎𝜎2



Discrete domain image reconstruction



Discrete-to-discrete inverse problem
If we accept the resolution limit, we can re-frame the goal of image reconstruction:
• Recover discretized version of 𝐼𝐼 = 𝐼𝐼 ∗ sinc (instead of continuous 𝐼𝐼)

desired image
𝐼𝐼 𝑟𝑟

signal
𝑆𝑆 𝑘𝑘

Discrete-to-discrete 
encoding operator

𝐄𝐄

Reconstruction operator
𝐄𝐄−1

• 𝐼𝐼 is feasible, so 𝐄𝐄 still generates exact measured data
• 𝐄𝐄−1 may now exist, as it is not trying to undo resolution change



Matrix-vector inverse problem
When encoding is a linear operation (like Fourier encoding),
 it can be described by matrix multiplication… …it does not have to be implemented by matrix multiplication

 (e.g. FFT implementation of DFT matrix operation)

vectorized image
𝐦𝐦

data vector
𝐝𝐝

Matrix operator
𝐄𝐄

Reconstruction operator
𝐄𝐄−1

𝐝𝐝 = 𝐄𝐄𝐄𝐄
𝐦𝐦 = 𝐄𝐄−1𝐝𝐝



When does 𝐄𝐄−1 exist?

When 𝐄𝐄 is square (as many data in 𝐝𝐝 as unknowns in 𝐦𝐦):

𝐄𝐄−1 exists!    Unique solution:  𝐦𝐦 = 𝐄𝐄−1𝐝𝐝

𝐦𝐦𝐄𝐄=𝐝𝐝

(Assuming linearly independent rows/columns)



When does 𝐄𝐄−1 exist?

When 𝐄𝐄 is “tall” (more data than unknowns): Problem is overdetermined

No 𝐄𝐄−1 exists. Unique least-squares solution:  arg min
𝐦𝐦

𝐝𝐝 − 𝐄𝐄𝐄𝐄 2

(Assuming linearly independent columns)

𝐦𝐦
𝐄𝐄=𝐝𝐝



Least-squares solution

�𝐦𝐦 = arg min
𝐦𝐦

𝐝𝐝 − 𝐄𝐄𝐄𝐄 2

𝐄𝐄𝐄𝐄 = 𝐝𝐝

𝐄𝐄𝐻𝐻𝐄𝐄 �𝐦𝐦 = 𝐄𝐄𝐻𝐻𝐝𝐝
𝐄𝐄𝐻𝐻𝐄𝐄 −1𝐄𝐄𝐻𝐻𝐄𝐄 �𝐦𝐦 = 𝐄𝐄𝐻𝐻𝐄𝐄 −1𝐄𝐄𝐻𝐻𝐝𝐝

�𝐦𝐦 = 𝐄𝐄𝐻𝐻𝐄𝐄 −1𝐄𝐄𝐻𝐻𝐝𝐝

�𝐦𝐦 will have least possible squared error 𝐝𝐝 − 𝐄𝐄 �𝐦𝐦 2

�𝐦𝐦 is unique (when 𝐄𝐄 has linearly independent columns)
If there is a feasible solution, it is also the least-squares solution: 𝐝𝐝 − 𝐄𝐄 �𝐦𝐦 2 = 0

(𝐄𝐄𝐻𝐻 is Hermitian/conjugate transpose)



When does 𝐄𝐄−1 exist?

When 𝐄𝐄 is “wide” (fewer data than unknowns): Problem is underdetermined 
(ill-posed)

No 𝐄𝐄−1 exists. Infinite solutions:  𝐦𝐦 s. t.  𝐄𝐄𝐄𝐄 = 𝐝𝐝

𝐦𝐦

𝐄𝐄=𝐝𝐝

(Assuming linearly independent rows)



Underdetermined problem
Some approaches

�𝐦𝐦 = arg min
𝐦𝐦

𝑅𝑅 𝐦𝐦  s. t.  𝐄𝐄𝐄𝐄 = 𝐝𝐝

�𝐦𝐦 = arg min
𝐦𝐦

𝐝𝐝 − 𝐄𝐄𝐄𝐄 2 + 𝑅𝑅 𝐦𝐦

𝑅𝑅 𝐦𝐦  “regularizes”/constrains the problem
Can enforce other image properties or encourage a probable solution 𝐦𝐦

Example:   𝑅𝑅 𝐦𝐦 = 𝐦𝐦 2 : prioritize minimum-norm solution

Foundation of regularized image reconstruction (e.g., compressed sensing)

(force solution to be feasible)

(allow deviation from data)



When does 𝐄𝐄−1 exist?

𝐦𝐦𝐄𝐄=𝐝𝐝

𝐦𝐦
𝐄𝐄=𝐝𝐝

𝐦𝐦
𝐄𝐄=𝐝𝐝

Square Exactly
determined E−1 exists Feasible solution

exists
Solution
is unique

Tall Overdetermined No E−1 Feasibility
not guaranteed

Least-squares 
solution is unique

Wide Underdetermined No E−1 Feasible solutions
exist

Solution is
not unique

(infinite sols.)

(Still assuming E is not rank-deficient!)



Linear least-squares reconstruction of noisy data

𝐝𝐝 = 𝐄𝐄𝐦𝐦 + 𝐧𝐧

�𝐦𝐦 = 𝐄𝐄𝐻𝐻𝐄𝐄 −1𝐄𝐄𝐻𝐻𝐝𝐝
�𝐦𝐦 = 𝐄𝐄𝐻𝐻𝐄𝐄 −1𝐄𝐄𝐻𝐻(𝐄𝐄𝐄𝐄 + 𝐧𝐧)

�𝐦𝐦 = 𝐄𝐄𝐻𝐻𝐄𝐄 −1𝐄𝐄𝐻𝐻𝐄𝐄𝐄𝐄 + 𝐄𝐄𝐻𝐻𝐄𝐄 −1𝐄𝐄𝐻𝐻𝐧𝐧

�𝐦𝐦 = 𝐦𝐦 + 𝐄𝐄𝐻𝐻𝐄𝐄 −1𝐄𝐄𝐻𝐻𝐧𝐧

Reconstructed image = desired image + reconstruction of noise
𝐄𝐄 and 𝐧𝐧 determine noise characteristics; 𝐦𝐦 does not



Special case examples



DFT as a matrix operation
Discrete Fourier transform:

𝑆𝑆 𝑘𝑘 = �
𝑛𝑛=−𝑁𝑁/2

𝑁𝑁/2−1

𝐼𝐼 𝑛𝑛 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗/𝑁𝑁

𝑆𝑆 −𝑁𝑁/2
⋮

𝑆𝑆 0
⋮

𝑆𝑆 𝑁𝑁/2 − 1

=  

𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗/𝑁𝑁 ⋯ 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗/𝑁𝑁 ⋯ 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗/𝑁𝑁

⋮ ⋱ ⋮ ⋱ ⋮
𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗/𝑁𝑁 ⋯ 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗/𝑁𝑁 ⋯ 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗/𝑁𝑁

⋮ ⋱ ⋮ ⋱ ⋮
𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗/𝑁𝑁 ⋯ 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗/𝑁𝑁 ⋯ 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗/𝑁𝑁

𝐼𝐼 −𝑁𝑁/2
⋮

𝐼𝐼 0
⋮

𝐼𝐼 𝑁𝑁/2 − 1𝑘𝑘

𝑛𝑛



DFT as a matrix operation
Discrete Fourier transform:

𝑆𝑆 𝑘𝑘 = �
𝑛𝑛=−𝑁𝑁/2

𝑁𝑁/2−1

𝐼𝐼 𝑛𝑛 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗/𝑁𝑁

𝑆𝑆 −𝑁𝑁/2
⋮

𝑆𝑆 0
⋮

𝑆𝑆 𝑁𝑁/2 − 1

=  

𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗/𝑁𝑁 ⋯ 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗/𝑁𝑁 ⋯ 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗/𝑁𝑁

⋮ ⋱ ⋮ ⋱ ⋮
𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗/𝑁𝑁 ⋯ 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗/𝑁𝑁 ⋯ 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗/𝑁𝑁

⋮ ⋱ ⋮ ⋱ ⋮
𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗/𝑁𝑁 ⋯ 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗/𝑁𝑁 ⋯ 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗/𝑁𝑁

𝐼𝐼 −𝑁𝑁/2
⋮

𝐼𝐼 0
⋮

𝐼𝐼 𝑁𝑁/2 − 1𝑘𝑘

𝑛𝑛

Phase (−2𝜋𝜋𝜋𝜋𝜋𝜋/𝑁𝑁)
−𝜋𝜋

0

𝜋𝜋



DFT matrix-vector inverse problem
DFT matrix is square and has linearly independent rows/columns, so an inverse exists

vectorized image
𝐦𝐦

data vector
𝐝𝐝

DFT matrix
𝐅𝐅

Inverse DFT (IDFT) matrix
𝐅𝐅−1

𝐝𝐝 = 𝐅𝐅𝐅𝐅
𝐦𝐦 = 𝐅𝐅−1𝐝𝐝



DFT matrix-vector inverse problem
DFT matrix is square and has linearly independent rows/columns, so an inverse exists

FFTs (Fast Fourier Transforms) used in implementation, not matrix multiplication

vectorized image
𝐦𝐦

data vector
𝐝𝐝

FFT
𝐅𝐅

Inverse FFT
𝐅𝐅−1

𝐝𝐝 = 𝐅𝐅𝐅𝐅
𝐦𝐦 = 𝐅𝐅−1𝐝𝐝



IDFT reconstruction of two averages

𝐝𝐝 = 𝐅𝐅𝐦𝐦 + 𝐧𝐧

�𝐦𝐦 = 𝐅𝐅−1𝐝𝐝
�𝐦𝐦 = 𝐅𝐅−1(𝐅𝐅𝐅𝐅 + 𝐧𝐧)
�𝐦𝐦 = 𝐅𝐅−1𝐅𝐅𝐅𝐅 + 𝐅𝐅−1𝐧𝐧

�𝐦𝐦 = 𝐦𝐦 + 𝐅𝐅−1𝐧𝐧

Reconstructed image = desired image + IDFT of noise



Effect of IDFT on additive white Gaussian noise (AWGN)

AWGN properties in k-space

𝐧𝐧
• Gaussian-distributed

• Zero-mean

• Variance 𝜎𝜎k2 is constant throughout k-space

• Noise at different samples are independent

𝐅𝐅−1 preserves the basic properties of our noise
Equally valid to consider AWGN in k-space or as AWGN in image space

AWGN properties in image space after IDFT

𝐅𝐅−1𝐧𝐧
• Gaussian-distributed

• Zero-mean

• Variance 𝜎𝜎2 is constant throughout k-space

• Noise at different voxels are independent



IDFT reconstruction of multiple averages (rescans)

𝐝𝐝 = 𝐄𝐄𝐦𝐦 + 𝐧𝐧  �𝐦𝐦 = 𝐦𝐦 + 𝐄𝐄𝐻𝐻𝐄𝐄 −1𝐄𝐄𝐻𝐻𝐧𝐧

𝐝𝐝1
𝐝𝐝2

= 𝐅𝐅
𝐅𝐅 𝐦𝐦 +

𝐧𝐧1
𝐧𝐧2   �𝐦𝐦 = 𝐦𝐦 + 𝐅𝐅−1 𝐧𝐧1+𝐧𝐧2

2

     reduces noise std. dev. by 2

𝐝𝐝1
𝐝𝐝2
⋮
𝐝𝐝𝑇𝑇

=

𝐅𝐅
𝐅𝐅
⋮
𝐅𝐅

𝐦𝐦 +

𝐧𝐧1
𝐧𝐧2
⋮
𝐧𝐧𝑇𝑇

  �𝐦𝐦 = 𝐦𝐦 + 𝐅𝐅−1 ∑𝑡𝑡 𝐧𝐧𝑡𝑡
𝑇𝑇

     reduces noise std. dev. by 𝑇𝑇



Complex coil combination (SENSE, R=1)
𝐝𝐝 = 𝐄𝐄𝐦𝐦 + 𝐧𝐧    �𝐦𝐦 = 𝐦𝐦 + 𝐄𝐄𝐻𝐻𝐄𝐄 −1𝐄𝐄𝐻𝐻𝐧𝐧

𝐝𝐝1
𝐝𝐝2
⋮
𝐝𝐝𝐶𝐶

= 𝐅𝐅

𝐂𝐂1
𝐂𝐂2
⋮
𝐂𝐂𝐿𝐿

𝐦𝐦 + 𝐧𝐧  �𝐦𝐦 = 𝐦𝐦 + 𝐂𝐂𝐻𝐻𝐂𝐂 −1𝐂𝐂𝐻𝐻𝐅𝐅−1𝐧𝐧

𝐂𝐂𝐻𝐻𝐂𝐂 −1𝐂𝐂𝐻𝐻𝐱𝐱 is voxelwise phase correction & scaling
1

∑ℓ 𝐶𝐶ℓ 𝑟𝑟 2 
∑ℓ 𝐶𝐶ℓ∗ 𝑟𝑟 𝑥𝑥ℓ(𝑟𝑟)   Noise std. dev ∝ 1

∑ℓ 𝐶𝐶ℓ 𝑟𝑟 2

Noise still Gaussian and still independent from voxel to voxel,
but noise amplification ∝−1 collective coil sensitivity ∑ℓ 𝐶𝐶ℓ 𝑟𝑟 2



Parallel imaging (SENSE, R>1)

𝐝𝐝 = 𝐄𝐄𝐦𝐦 + 𝐧𝐧    �𝐦𝐦 = 𝐦𝐦 + 𝐄𝐄𝐻𝐻𝐄𝐄 −1𝐄𝐄𝐻𝐻𝐧𝐧

𝐝𝐝1
𝐝𝐝2
⋮
𝐝𝐝𝐶𝐶

= 𝛀𝛀𝐅𝐅

𝐂𝐂1
𝐂𝐂2
⋮
𝐂𝐂𝐿𝐿

𝐦𝐦 + 𝐧𝐧  �𝐦𝐦 = 𝐦𝐦 + 𝐂𝐂𝐻𝐻𝐅𝐅𝐻𝐻𝛀𝛀𝐻𝐻𝛀𝛀𝛀𝛀𝛀𝛀 −1𝐂𝐂𝐻𝐻 𝛀𝛀𝛀𝛀 𝐻𝐻𝐧𝐧

𝐅𝐅𝐻𝐻𝛀𝛀𝐻𝐻𝐧𝐧 is aliased noise “image”  noise pattern repeats in space!

Noise still Gaussian, but no longer independent
Noise amplification depends on 𝛀𝛀 and 𝐂𝐂 together (g-factor)



Takeaways from specific examples
• For linear reconstructions,

noise properties depend on the reconstruction operator, not on the image 
�𝐦𝐦 = 𝐦𝐦 + 𝐄𝐄𝐻𝐻𝐄𝐄 −1𝐄𝐄𝐻𝐻𝐧𝐧

• Fourier reconstruction preserves i.i.d. properties of AWGN
𝐅𝐅−1𝐧𝐧 is still i.i.d. AWGN

• For other reconstruction operators, image-space noise may not be i.i.d.
Be careful during post-processing!



Constrained image reconstruction



Recall: Underdetermined problem
Some approaches

�𝐦𝐦 = arg min
𝐦𝐦

𝑅𝑅 𝐦𝐦  s. t.  𝐄𝐄𝐄𝐄 = 𝐝𝐝

�𝐦𝐦 = arg min
𝐦𝐦

𝐝𝐝 − 𝐄𝐄𝐄𝐄 2 + 𝑅𝑅 𝐦𝐦

Regularizer 𝑅𝑅 𝐦𝐦  provides a second objective beyond the data term
• Can “break the tie” between infinite feasible solutions
• Can denoise (when feasibility is not the goal)
• Constrains solution to leverage other knowledge about images

(force solution to be feasible)

(allow deviation from data)



Probabilistic interpretation
Least-squares minimization gave maximum likelihood (ML) solution:

𝐼𝐼ML = arg max
𝐼𝐼
𝑝𝑝 𝑆𝑆 𝐼𝐼 = arg max

𝐼𝐼
log 𝑝𝑝 𝑆𝑆 𝐼𝐼 = arg min

𝐼𝐼
𝑆𝑆 − 𝒯𝒯 𝐼𝐼 2

What if we want the most probable image given the data (maximum a posteriori [MAP] estimate)

 𝐼𝐼MAP = arg max
𝐼𝐼
𝑝𝑝 𝐼𝐼 𝑆𝑆

 𝐼𝐼MAP  = arg max
𝐼𝐼

𝑝𝑝(𝑆𝑆|𝐼𝐼) 𝑝𝑝 𝐼𝐼
𝑝𝑝 𝑆𝑆

 𝐼𝐼MAP  = arg max
𝐼𝐼
𝑝𝑝 𝑆𝑆 𝐼𝐼 𝑝𝑝 𝐼𝐼

 𝐼𝐼MAP  = arg max
𝐼𝐼

log 𝑝𝑝 𝑆𝑆 𝐼𝐼 + log 𝑝𝑝 𝐼𝐼

 𝐼𝐼MAP  = arg min
𝐼𝐼

1
2𝜎𝜎2

𝑆𝑆 − 𝒯𝒯 𝐼𝐼 2 − log 𝑝𝑝 𝐼𝐼

Can define regularization term 𝑅𝑅 𝐼𝐼  to express the prior probability of an image, e.g., 𝑅𝑅 𝐼𝐼 = −log 𝑝𝑝 𝐼𝐼  

If 𝑝𝑝 𝐼𝐼  is constant (uniform distribution; all images equally likely), then MAP solution reduces to ML solution

𝑅𝑅 𝐼𝐼

⋮

𝑝𝑝 𝐼𝐼10.50

−log 𝑝𝑝 𝐼𝐼

High penalty for low-probability image

Low penalty for
highly probable image



What makes an image “more probable”?
When it conforms to certain properties:

• Phase properties  partial Fourier imaging
• Sparsity properties  compressed sensing
• Rank properties  low-rank imaging
• Learned properties  artificial intelligence/machine learning
• Et cetera

𝑅𝑅 ⋅  expresses our prior knowledge about what images can/should look like
Squared-norm data term expresses posterior knowledge (observed data)

Regularized least squares is not the only way to constrain image reconstruction,
but it is still a useful framework for understanding other image reconstruction algorithms too



Best algorithm for solving �𝐦𝐦 = arg min
𝐦𝐦

𝐝𝐝 − 𝐄𝐄𝐄𝐄 2 + 𝑅𝑅 𝐦𝐦  depends on both 𝐄𝐄 and 𝑅𝑅 ⋅

Many algorithms use variations of alternating minimization

These reconstruction operators are not necessarily linear!
• Image noise may not be i.i.d Gaussian
• Image noise may depend on the image itself

Exception: when 𝑅𝑅 𝐦𝐦  is a squared 2-norm, reconstruction operator is linear
  and produces Gaussian noise (but not necessarily i.i.d.)

How to solve a regularized least-squares problem?

Two forms of knowledge
1. Observations from data (small 𝐝𝐝 − 𝐄𝐄𝐄𝐄 2)
2. Known image properties (small 𝑅𝑅 𝐦𝐦 )

Iterate over two steps enforcing each objective:
1. Enforce data consistency (𝐄𝐄𝐄𝐄 ≈ 𝐝𝐝)
2. Impose desired image properties (reduce 𝑅𝑅 𝐦𝐦 )



Partial-Fourier imaging: Phase properties

Fourier conjugate symmetry

Real images are conjugate symmetric (𝑆𝑆 𝑘𝑘 = 𝑆𝑆∗ −𝑘𝑘 ),

so only ½ k-space would need sampling

Phase smoothness

MR images are not typically real-valued,
but we can exploit smooth or known phase

Full k-space Conjugate synthesis
from ½ k-space

Magnitude

Phase

𝑆𝑆 −𝑘𝑘 = 𝑆𝑆∗ 𝑘𝑘



Partial-Fourier imaging: Sampling
Asymmetric coverage

with enough of central k-space to estimate smooth phase

Acquired

Not acquired



1. Estimate phase from symmetric portion of acquired k-space

2. Use phase estimate to synthesize missing data
•  Margosian/Homodyne        (Margosian et al. SMRM 1985; Noll et al. IEEE-TMI 1991)
◦  Filter and divide image by estimated phase (make it real), then perform conjugate synthesis

Partial-Fourier imaging: Reconstruction

Filter Remove 
Phase

Conj.
Synth.



1. Estimate phase from symmetric portion of acquired k-space

2. Use phase estimate to synthesize missing data
•  Margosian/Homodyne        (Margosian et al. SMRM 1985; Noll et al. IEEE-TMI 1991)
◦  Filter and divide image by estimated phase (make it real), then perform conjugate synthesis

•  POCS: Projection onto convex sets        (Lindskog et al. SMRM 1989)
◦  Iteratively solve for an image which:

•  Matches acquired k-space samples
•  Matches estimated phase in image space

◦ A simple form of alternating minimization

Partial-Fourier imaging: Reconstruction

Replace
Phase

Replace
Data

Iterate

Output



Compressed sensing: Transform sparsity

Figures adapted from
Lustig M et al., IEEE Signal Process Mag 2008

 

Wavelet Compressed (10x)

Finite differences Compressed (20x)

Temporal frequency Compressed (20x)

Temporal eigenspace Compressed (20x)Spatial eigenspace

Images are sparse in these domains (many small/zero values)



Probabilistic interpretation

𝑝𝑝 𝐦𝐦 = �
𝑛𝑛

1
2𝑏𝑏

𝑒𝑒−
𝚿𝚿𝚿𝚿 n
𝑏𝑏

(Laplace distribution)

Heavy concentration near 0

Geometric interpretation
Find smallest 𝚿𝚿𝚿𝚿 1 that produces feasible solution

𝚿𝚿𝚿𝚿 1 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 has points along the axes and
can often find the sparse solution

Compressed sensing: L1 regularization

𝑅𝑅 𝐦𝐦 ∝ 𝚿𝚿𝚿𝚿 1 = �
𝑛𝑛

𝚿𝚿𝚿𝚿 n

𝐄𝐄𝐄𝐄 = 𝐝𝐝
(space of feasible solutions

𝚿𝚿𝚿𝚿

𝑝𝑝 𝑚𝑚1

𝑚𝑚2



Compressed sensing: Sampling
Nyquist sampling Uniform undersampling Incoherent undersampling

point spread function (PSF)

Figures adapted from
Lustig M et al., IEEE Signal Process Mag 2008

 

point spread function (PSF)



Compressed sensing: Sampling

sampling 
pattern

PSF

PSF
cross-
section

Figures adapted from
Lustig M et al., IEEE Signal Process Mag 2008

 



Compressed sensing: Example transforms
• No transformation
◦ Suitable when image itself is sparse

• e.g., angiograms (no background contrast)

• Finite difference transformation (total variation)
◦ Suitable when edge map is sparse

• e.g., brain images (discrete tissue compartments)

• Wavelet transformation (~multiscale edge information)
◦ Suitable for wide range of medical and natural images

• e.g., MR images in general

𝐦𝐦 is sparse

𝛁𝛁𝛁𝛁 is sparse

𝚿𝚿𝚿𝚿 is sparse

Chang W et al., AJNR 2015
Lustig M et al., Magn Reson Med 2007



Compressed sensing: alternating minimization
Two goals:

1. Impose sparsity
2. Maintain data consistency

Find the image with sparsest representation that also fits the data

k-space domain image domain wavelet domain



Compressed sensing: alternating minimization
Two goals:

1. Impose sparsity
2. Maintain data consistency

Find the image with sparsest representation that also fits the data

Impose sparsity
(e.g., threshold)



Compressed sensing: alternating minimization
Two goals:

1. Impose sparsity
2. Maintain data consistency

Find the image with sparsest representation that also fits the data

Maintain data 
consistency

(e.g., replace)



Compressed sensing: alternating minimization
Two goals:

1. Impose sparsity
2. Maintain data consistency

Find the image with sparsest representation that also fits the data

Impose sparsity
(e.g., threshold)



Compressed sensing: alternating minimization
Two goals:

1. Impose sparsity
2. Maintain data consistency

Find the image with sparsest representation that also fits the data

After several iterations, a balance between both goals is achieved



Please fill out the evaluation form!
 (see QR code)

Questions?
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