MRI Signal Equation, Basic Image Reconstruction

M219 Principles and Applications of MRI Holden H. Wu, Ph.D. 2025.02.10

Department of Radiological Sciences David Geffen School of Medicine at UCLA

Outline

- MRI Signal Equation (review)
- Basic Image Reconstruction
- Sampling Considerations
- Noise Considerations
- Reconstruction Considerations
 - Zero padding (interpolation)
 - Windowed recon to reduce Gibb's ringing
 - Multi-channel (coil) reconstruction

MRI Signal Equation

$$s(t) = \iint_{x,y} \vec{M}_{xy}^0(\vec{r}) \cdot e^{-i\Delta\omega(\vec{r})t} \mathrm{d}\vec{r}$$

The MRI Signal Equation is the...

$$s\left(t\right) = \iint_{x,y} \vec{M}_{xy}^{0}\left(x,y\right) \cdot e^{-i\Delta\omega(x,y)t} \mathrm{d}x \mathrm{d}y \quad \dots \text{2D Fourier Transform!}$$

$$\Delta \omega(x,y) = \gamma G_x \cdot x + \gamma G_y \cdot y \qquad \qquad \text{Gradients define } \Delta w$$

$$k_x(t) = \frac{\gamma}{2\pi} G_x t \qquad k_y(t) = \frac{\gamma}{2\pi} G_y t \qquad \qquad \text{k-space is convenient...}$$

$$s\left(k_x(t), k_y(t)\right) = \int \int_{x,y} \underbrace{\vec{M}_{xy}^0\left(x, y\right)}_{I\left(\vec{r}\right)} \cdot e^{-i2\pi [k_x(t)x + k_y(t)y]} \mathrm{d}x \mathrm{d}y$$

 $I = \mathcal{T}^{-1} \left\{ S \right\}$

(Fourier Transform)

The Fourier Transform

$$S(\vec{k}) = \int_{-\infty}^{+\infty} I(\vec{r}) e^{-i2\pi \vec{k} \cdot \vec{r}} d\vec{r}$$

MRI Signal Equation

$$S(\vec{k}) \xleftarrow{\mathcal{F}} I(\vec{r})$$

$$S(k_x) = \int_{-\infty}^{+\infty} I(x) e^{-i2\pi(k_x x)} dx$$
 1D

$$S(k_x, k_y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} I(x, y) e^{-i2\pi(k_x x + k_y y)} dx dy$$
 2D

 $S(k_x, k_y, k_z) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} I(x, y, z) e^{-i2\pi(k_x x + k_y y + k_z z)} dx dy dz \quad \text{3D}$

 $\begin{array}{l} \mbox{Image Reconstruction} \\ \mbox{Given } S(\vec{k}_n) = \int_{-\infty}^{+\infty} I\left(\vec{r}\right) e^{-i2\pi \vec{k}_n \cdot \vec{r}} d\vec{r} & \\ \mbox{Image Reconstruction} \\ \mbox{Equation} \end{array}$

How do we determine $I(\vec{r})$?

Image Reconstruction $S(\vec{k}_n) = \int_{-\infty}^{+\infty} I(\vec{r}) e^{-i2\pi \vec{k}_n \cdot \vec{r}} d\vec{r} \text{ MRI Signal}_{\text{Equation}}$

$$\mathcal{D} = \left\{ \vec{k}_n = n\Delta \vec{k}, n = \dots, -2, -1, 0, 1, 2, \dots \right\}$$

One-dimensional Case

This is what we measure!

This is what we want!

Image Reconstruction

$$S[n] = S(n\Delta k_x) = \int_{-\infty}^{+\infty} I(x) e^{-i2\pi n\Delta k_x \cdot x} dx$$
Eqn. 6.9
This is what we measure! This is what we want!
We can show the following...(Page 191 in Lauterbur).

$$\sum_{n=-\infty}^{\infty} S[n]e^{i2\pi n\Delta kx} = \frac{1}{\Delta k} \sum_{n=-\infty}^{\infty} I(x - \frac{n}{\Delta k}) \text{ Eqn. 6.10}$$
Fourier Series Periodic Extension of I(x)

n

Image Reconstruction

$$\sum_{n=-\infty}^{\infty} S[n] e^{i2\pi n \Delta kx}$$

- Fourier series
- Δk is the fundamental frequency
- *S*[n] coefficient of the nth harmonic

- Periodic extension of *I*(*x*)
- *n* is an integer

 $= \frac{1}{\Delta k} \sum I\left(x - \frac{n}{\Delta k}\right)$

 ∞

 $n = -\infty$

• Period is $1/\Delta k$ =FOV

Sampling Considerations

Infinite Sampling

 $S(k) \text{ is measured at } k \in \mathcal{D}$ $\mathcal{D} = \{n\Delta k, -\infty < n < +\infty\}$

Infinite SamplingS(k) is measured at $k \in \mathcal{D}$ $\mathcal{D} = \{n\Delta k, -\infty < n < +\infty\}$

Can I(x) be recovered from its periodic extension? $\sum_{n=-\infty}^{\infty} S[n]e^{i2\pi n\Delta kx} = \frac{1}{\Delta k} \sum_{n=-\infty}^{\infty} I\left(x - \frac{n}{\Delta k}\right)$ Infinite SamplingS(k) is measured at $k \in \mathcal{D}$ $\mathcal{D} = \{n\Delta k, -\infty < n < +\infty\}$

Can I(x) be recovered from its periodic extension? $\sum_{n=-\infty}^{\infty} S[n]e^{i2\pi n\Delta kx} = \frac{1}{\Delta k} \sum_{n=-\infty}^{\infty} I\left(x - \frac{n}{\Delta k}\right)$

If I(x) = 0 on $|x| > FOV_x/2\left(i.e. \Delta k < \frac{1}{FOV_x}\right)$, then

Infinite SamplingS(k) is measured at $k \in \mathcal{D}$ $\mathcal{D} = \{n\Delta k, -\infty < n < +\infty\}$

Can *I(x)* be recovered from its periodic extension? $\sum_{n=-\infty}^{\infty} S[n]e^{i2\pi n\Delta kx} = \frac{1}{\Delta k} \sum_{n=-\infty}^{\infty} I\left(x - \frac{n}{\Delta k}\right)$

If
$$I(x) = 0$$
 on $|x| > FOV_x/2\left(i.e. \ \Delta k < \frac{1}{FOV_x}\right)$, then

$$I(x) = \Delta k \sum_{n=-\infty}^{\infty} S[n]e^{i2\pi n\Delta kx}, \ |x| < \frac{1}{\Delta k} \text{ Eqn. 6.16}$$

But ∞ takes forever...

$$I(x) = \Delta k \sum_{n=-N/2}^{N/2-1} S[n] e^{i2\pi n \Delta kx}, \ |x| < \frac{1}{\Delta k} \ \text{Eqn. 6.20}$$

This is the fundamental image reconstruction equation for MRI.

Sampling Considerations

Review Sampling Theorem

Review Lectures 9&10 on Spatial Localization

Noise Free

Noisy

Signal-to-Noise Ratio (SNR)

- Signal-to-Noise Ratio (SNR)
 - A fundamental measure of image quality

 $SNR \triangleq \frac{signal \ amplitude}{\sigma \ of \ noise}$

- $SNR_{dB} = 20 \cdot log(SNR)$

- Noise Sources
 - Thermal (Brownian motion of electrons)
 - Coil resistance, sample (body) resistance
 - Power spectral density: N(f) = 4kTR and $N(\Delta f) = 4kTR \cdot \Delta f$
 - Modeled as additive white Gaussian (AWG) noise
 - Noise from the body typically dominates, $SNR \propto B_0$

- Image Noise Statistics
 - Physical real-valued signal $\xi_p(t) = s_p(t) + n_p(t)$
 - Sampled (Nyquist) demodulated complex signal $\hat{\xi}(j) = \hat{s}(j) + \hat{n}(j)$
 - \hat{n} is bivariate (complex) zero-mean Gaussian, with real/imag components each with σ_n^2

- Image Noise Statistics
 - 2D Cartesian k-space sampling is uniform and 2D FT is unitary, thus noise in the image domain will also be AWG
 - The magnitude operation |I(a, b)| alters noise statistics
 - Background (*I* is zero-mean): Rayleigh distr.
 - Signal regions: Rician distr.

Effect of Acquisition Time

- Simple 1D example (impulse in image space)
- N samples in k-space, each with amplitude A
- Noise variances add (independence)

$$SNR = \frac{\sum_{j=1}^{N} A}{\sqrt{\sum_{j=1}^{N} \sigma_n^2}} = \frac{NA}{\sqrt{N\sigma_n^2}} = \frac{\sqrt{NA}}{\sigma_n}$$

- Effect of Signal Averaging
 - Average separate measurements of the same kspace data samples (e.g., 2 measurements)
 - Signal amplitudes add
 - Noise variances also add (independence)

$$SNR_{2Ave} = \frac{\sum_{j=1}^{N} 2A}{\sqrt{\sum_{j=1}^{N} 2\sigma_n^2}} = \frac{2NA}{\sqrt{2N\sigma_n^2}} = \frac{\sqrt{2NA}}{\sigma_n}$$

- $SNR_{2Ave} = \sqrt{2} \cdot SNR$

- Effect of Readout Time
 - Double readout duration T_{read}
 - Typically, also double sampling interval Δt to maintain k-space sampling extent
 - $\Delta f \propto 1/(\Delta t)$: halves the signal bandwidth Δf
 - Recall that $\sigma_n^2 \propto \Delta f$

$$SNR_{2 \cdot Tread} = \frac{NA}{\sqrt{N\sigma_n^2/2}} = \frac{\sqrt{2NA}}{\sigma_n}$$
$$- SNR_{2 \cdot Tread} = \sqrt{2} \cdot SNR$$

- Summary of Acquisition Time Effects – $SNR \propto \sqrt{N_{ave} \cdot T_{read}}$
 - $SNR \propto \sqrt{measurement time}$
- Effect of Spatial Resolution
 - $SNR \propto (\delta_x)(\delta_y)(\delta_z)$
- Other factors
 - $SNR \propto f(\rho, T_1, T_2, ...)$

Zero Padding

Zero-Padding

- Append zeros to k-space data before FFT
 - Append symmetrically about k-space
- Why?
 - If N=2ⁿ, then the radix-2 FFT can be used
 - Increases the "digital" resolution; interpolates pixels in image space
 - Reconstruction with correct aspect ratio
 - Starting point for iterative reconstructions; or a reference for comparisons

Low-Res Data

64x64

Low-Res Data

64x64

Asymmetric Res

Low-Res Data

64x64

32x64

Pixels are square, but they shouldn't be.

Asymmetric Res

Low-Res Data

64x64

32x64

Low-Res Data Asymmetric Res Zero-Padded

64x64

32x64

Windowed Reconstruction to Reduce Gibb's Ringing

Gibb's Ringing

- Spurious ringing around sharp edges
- Max/Min overshoot is ~9% of the intensity discontinuity
 - Independent of the # of recon points
 - Frequency of ringing increases as # of recon points increases
 - Ringing becomes less apparent
- Result of truncating the Fourier series model as a consequence of finite sampling
- Can reduce by:
 - Acquiring more data
 - Filtering the data to reduce oscillations in the PSF

Shepp-Logan Phantom

Zero-Pad

Windowed Reconstruction

$$\hat{I}(x) = \Delta k \sum_{n=-N/2}^{N/2-1} S(n\Delta k) e^{i2\pi n\Delta kx}$$

Fourier reconstruction

Windowed Reconstruction

$$\hat{I}(x) = \Delta k \sum_{n=-N/2}^{N/2-1} S(n\Delta k) e^{i2\pi n\Delta kx}$$

Fourier reconstruction

$$\hat{I}(x) = \Delta k \sum_{n=-N/2}^{N/2-1} S(n\Delta k) w_n e^{i2\pi n\Delta kx}$$

$$\text{Eqn. 6.21}$$

$$\text{Windowed Fourier}$$

$$\text{reconstruction}$$

$$k\text{-space}$$

$$\text{filter/window}$$

$$\text{function}$$

Point Spread Function for a windowed Fourier reconstruction.

$$h(x) = \Delta k \sum_{\substack{n=-N/2}}^{N/2-1} w_n e^{i2\pi n \Delta kx}$$

Hamming Filter - 1D $w(n) \triangleq \begin{cases} 0.54 + 0.46\cos(2\pi\frac{n}{N}) & -N/2 \le n \le N/2 - 1 \\ 0 & \text{otherwise} \end{cases}$

Windowed Reconstruction

FWHM PSF for a Hamming windowed Fourier reconstruction.

$$W_h = \left(\sum_{m=-N/2}^{N/2-1} \left(w_m/w_0\right) \Delta k\right)^{-1}$$

In general
$$w_m \leq w_0$$
, therefore $W_h \geq rac{1}{N\Delta k}$

Hamming windowed Fourier reconstruction suppresses ringing, but reduces effective spatial resolution.

Windowed Reconstruction

Fourier transform properties

 Convolution in the image domain is equivalent to multiplication in the frequency domain (and vice versa)

Hamming Filter - 2D $W(n) \triangleq w(n) \otimes w(n)$

Hamming Filter

Dot

Zero-Pad

Hamming Window & Zero-Pad

Multi-Channel (Coil) Reconstruction

8-Channel Head Coil

Each coil element (channel) has a unique sensitivity profile – $\vec{B_r}$ (\vec{r})

4-Channel Cardiac Coil

Each coil element (channel) has a unique sensitivity profile – \vec{B}_r (\vec{r})

Multi-Coil Reconstruction

 $I(\vec{r})
ightarrow$ Final *magnitude* image $I_j(\vec{r})
ightarrow$ Image from jth coil

 $\sigma_j^2
ightarrow$ Noise variance

- Depends on coil loading
- Proximity to patient
- Measured with "noise scan"
- Weights each coil's contribution

Thanks!

- Next: fast imaging, advanced recon
- Acknowledgments
 - Dr. Daniel Ennis
 - Dr. Peng Hu
 - Dr. Kyung Sung

Holden H. Wu, Ph.D.

HoldenWu@mednet.ucla.edu

http://mrrl.ucla.edu/wulab