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Outline

• MRI Signal Equation (review)   

• Basic Image Reconstruction  

• Sampling Considerations 

• Noise Considerations 

• Reconstruction Considerations  
- Zero padding (interpolation) 
- Windowed recon to reduce Gibb’s ringing  
- Multi-channel (coil) reconstruction 



MRI Signal Equation
The MRI Signal Equation is the…
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Image Reconstruction
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The Fourier Transform
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Image Reconstruction
S(~kn) =
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How do we determine         ?I (~r)
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Image Reconstruction

Uniform k-space sampling
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Image Reconstruction

Uniform k-space sampling

S(~kn) =
Z +1

�1
I (~r) e�i2⇡~kn·~rd~r
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One-dimensional Case
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Image Reconstruction

This is what we measure!
➠ ➠

This is what we want!

S [n] = S (n�kx) =
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Image Reconstruction

This is what we measure!
➠ ➠

This is what we want!

S [n] = S (n�kx) =

Z +⇥

�⇥
I (x) e�i2�n�kx·xdx{ {

➠We can show the following...(Page 191 in Lauterbur).
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Fourier Series Periodic Extension of I(x)

Eqn. 6.9

Eqn. 6.10
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Image Reconstruction

• Fourier series 
• ∆k is the fundamental frequency 
• S[n] coefficient of the nth harmonic

• Periodic extension of I(x) 
• n is an integer 
• Period is 1/∆k=FOV
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Sampling Considerations



Infinite Sampling

D = {n�k,�1 < n < +1}
S(k) k 2 Dis measured at



Infinite Sampling

D = {n�k,�1 < n < +1}
S(k) k 2 Dis measured at

Can I(x) be recovered from its periodic extension?
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Infinite Sampling

D = {n�k,�1 < n < +1}
S(k) k 2 Dis measured at

Can I(x) be recovered from its periodic extension?

If I(x) = 0 on |x| > FOVx/2
⇣
i.e. �k <

1
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Infinite Sampling

D = {n�k,�1 < n < +1}
S(k) k 2 Dis measured at

Can I(x) be recovered from its periodic extension?

If I(x) = 0 on |x| > FOVx/2
⇣
i.e. �k <

1
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⌘
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I(x) = �k
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Eqn. 6.16
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But     takes forever...1



Finite Sampling

D = {n�k,�N/2  n  +N/2}
S(k) k 2 Dis measured at

I(x) = �k

N/2�1X

n=�N/2

S[n]ei2⇡n�kx, |x| < 1
�k

Fourier 
Step-size

Number of 
Sample Points

This is the fundamental image reconstruction equation for MRI.

Eqn. 6.20



Sampling Considerations

kx

ky

Review Lectures 9&10 on Spatial Localization 
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=
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Noise Considerations



Noise Considerations
Noise Free Noisy



Noise Considerations

• Signal-to-Noise Ratio (SNR) 
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Noise Considerations

• Signal-to-Noise Ratio (SNR)  
- A fundamental measure of image quality 

-  

-

SNR ≜
signal amplitude

σ of noise

SNRdB = 20 ⋅ log(SNR)

Nishimura Ch. 7.5



Noise Considerations

• Noise Sources 
- Thermal (Brownian motion of electrons) 
- Coil resistance, sample (body) resistance 

- Power spectral density:  
  and     

- Modeled as additive white Gaussian (AWG) noise  

- Noise from the body typically dominates, 

N( f ) = 4kTR N(Δf ) = 4kTR ⋅ Δf

SNR ∝ B0

Nishimura Ch. 7.5



Noise Considerations

• Image Noise Statistics  
- Physical real-valued signal  

 

- Sampled (Nyquist) demodulated complex signal 
 

-  is bivariate (complex) zero-mean Gaussian, 
with real/imag components each with 

ξp(t) = sp(t) + np(t)

̂ξ( j) = ̂s( j) + ̂n( j)

̂n
σ2

n

Nishimura Ch. 7.5



Noise Considerations

• Image Noise Statistics  
- 2D Cartesian k-space sampling is uniform and 

2D FT is unitary, thus noise in the image domain 
will also be AWG  

- The magnitude operation alters noise 
statistics 

- Background (I is zero-mean): Rayleigh distr. 
- Signal regions: Rician distr.

| I(a, b) |

Nishimura Ch. 7.5



Noise Considerations

• Effect of Acquisition Time  
- Simple 1D example (impulse in image space) 
- N samples in k-space, each with amplitude A 
- Noise variances add (independence) 

-
SNR =

∑N
j=1 A

∑N
j=1 σ2

n

=
NA

Nσ2
n

=
NA
σn

Nishimura Ch. 7.5



Noise Considerations
• Effect of Signal Averaging 

- Average separate measurements of the same k-
space data samples (e.g., 2 measurements) 

- Signal amplitudes add  
- Noise variances also add (independence) 

-
 

-

SNR2Ave =
∑N

j=1 2A

∑N
j=1 2σ2

n

=
2NA

2Nσ2
n

=
2NA
σn

SNR2Ave = 2 ⋅ SNR
Nishimura Ch. 7.5



Noise Considerations
• Effect of Readout Time  

- Double readout duration  
- Typically, also double sampling interval  to 

maintain k-space sampling extent   
-  : halves the signal bandwidth  
- Recall that  

-
 

-

Tread
Δt

Δf ∝ 1/(Δt) Δf
σ2

n ∝ Δf

SNR2⋅Tread =
NA

Nσ2
n /2

=
2NA
σn

SNR2⋅Tread = 2 ⋅ SNR
Nishimura Ch. 7.5



Noise Considerations

• Summary of Acquisition Time Effects 
-  

-  

• Effect of Spatial Resolution 
-  

• Other factors 
-

SNR ∝ Nave ⋅ Tread

SNR ∝ measurement time

SNR ∝ (δx)(δy)(δz)

SNR ∝ f(ρ, T1, T2, . . . )
Nishimura Ch. 7.5



Zero Padding



Zero-Padding

• Append zeros to k-space data before FFT 
- Append symmetrically about k-space 

• Why? 
- If N=2n, then the radix-2 FFT can be used 
- Increases the “digital” resolution; interpolates 

pixels in image space 
- Reconstruction with correct aspect ratio 
- Starting point for iterative reconstructions; or a 

reference for comparisons



Asymmetric Resolution
Low-Res Data

➠

64x64



Asymmetric Resolution
Low-Res Data

➠

64x64



Asymmetric Resolution
Low-Res Data Asymmetric Res

➠ ➠

64x64 32x64

Pixels are square, but they shouldn’t be.



Asymmetric Resolution
Low-Res Data Asymmetric Res

➠ ➠

64x64 32x64
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Asymmetric Resolution
Low-Res Data Asymmetric Res Zero-Padded

➠ ➠ ➠

64x64 32x64 64x “64”
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Windowed Reconstruction to 
Reduce Gibb’s Ringing 



Gibb’s Ringing
• Spurious ringing around sharp edges 

• Max/Min overshoot is ~9% of the intensity discontinuity 
- Independent of the # of recon points 
- Frequency of ringing increases as # of recon points 

increases 

• Ringing becomes less apparent 

• Result of truncating the Fourier series model as a 
consequence of finite sampling 

• Can reduce by: 
- Acquiring more data 
- Filtering the data to reduce oscillations in the PSF



Shepp-Logan Phantom



Gibb’s Ringing
32          64         128         256
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Gibb’s Ringing
32          64         128         256
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Zero-Pad
32          64         128         256

32 

64 
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Windowed Reconstruction
Î(x) = �k

N/2�1X

n=�N/2

S (n�k) ei2⇡n�kx

Fourier reconstruction



Windowed Reconstruction

Î(x) = �k

N/2�1X

n=�N/2

S (n�k)wnei2⇡n�kx

k-space 
filter/window 

function

Î(x) = �k

N/2�1X

n=�N/2

S (n�k) ei2⇡n�kx

Fourier reconstruction

Windowed Fourier 
reconstruction

Eqn. 6.21



Windowed Reconstruction
Î (x) = I (x) ⇤ h (x)

ObjectImage
Point 

Spread 
Function



Windowed Reconstruction
Î (x) = I (x) ⇤ h (x)

h(x) = �k

N/2�1X

n=�N/2

wnei2⇡n�kx

Point Spread Function for a windowed Fourier reconstruction.

Set This To
�-function



Hamming Filter - 1D
w(n) ,

⇢
0.54 + 0.46 cos(2⇡ n

N ) �N/2  n  N/2� 1
0 otherwise

-N/2          0          N/2-1



Windowed Reconstruction
FWHM PSF for a Hamming windowed Fourier reconstruction.

Wh �
1

N�k

Wh =

0

@
N/2�1X

m=�N/2

(wm/w0) �k

1

A
�1

In general wm≤w0, therefore

Hamming windowed Fourier reconstruction suppresses ringing, 
but reduces effective spatial resolution.



Windowed Reconstruction

⇤ =
Fourier Recon PSFTrue Object Fourier Recon

⇤ =
Hamming 

Weighted PSFTrue Object
Hamming Windowed 

Fourier Recon

I (x) h (x) Î (x)



Windowed Reconstruction

• Fourier transform properties  
- Convolution in the image domain  

is equivalent to  
multiplication in the frequency domain  
(and vice versa) 



Hamming Filter - 2D
W (n) , w(n)⌦ w(n)



Hamming Filter

=

➠

FFT

➠

FFT

•Dot 
Multiply



Zero-Pad
32          64         128         256

32 

64 

128 

256



Hamming Window & Zero-Pad
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Multi-Channel (Coil) 
Reconstruction



8-Channel Head Coil

Each coil element (channel) has a unique sensitivity profile – 

Coil-1

Coil-2

Coil-3 Coil-4 Coil-5 Coil-6

Coil-7

Coil-8

~Br (~r)



Coil 4

Coil 3

4-Channel Cardiac Coil

Coil 2

Coil 1

Each coil element (channel) has a unique sensitivity profile – ~Br (~r)



Coil 4Coil 2

4-Channel Cardiac Coil
Coil 3Coil 1

Each coil element (channel) has a unique sensitivity profile – ~Br (~r)



k-space

Multi-Coil Reconstruction
MagnitudeRMS

FFT-1

jth-coil

I(~r) =

vuut
X

j

 
|Ij(~r)|2

�2
j

!

Noise variance 
- Depends on coil loading 
- Proximity to patient 
- Measured with “noise scan” 
- Weights each coil’s contribution

Image from jth coil

I(~r) ! Final magnitude image

�2
j !

Ij (~r) !



Thanks!

• Next: fast imaging, advanced recon 
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