RF Pulse Design: RF Pulses, Adiabatic Pulses

M229 Advanced Topics in MRI Holden H. Wu, Ph.D. 2025.04.15

Department of Radiological Sciences

David Geffen School of Medicine at UCLA

Class Business

- Office hours
 - Holden: by appointment
 - Wenqi (HW1): 10-12 on 4/18 Fri
 - Timo (HW2): 4/18, 4/24, 4/25
 - Email beforehand
- Homework 1 due on 4/21 Mon
- Homework 2 due on 4/28 Mon
- Final project
 - Start thinking

Outline

- Review of RF pulses
- Adiabatic passage principle
- Adiabatic inversion
- Applications of adiabatic pulses
- MATLAB demo

Review of RF Pulses

RF Pulses

What do RF pulses do?

Challenges at higher B₀ fields?

Notation and Conventions

$$\vec{B} = B_0 \hat{k} + B_1(t) [\cos \omega t \hat{i} - \sin \omega t \hat{j}]$$

- ω = carrier frequency
- ω_0 = resonant frequency
- B₁(t) = complex valued envelope function

RF Pulse - Excitation

$$\vec{B} = B_0 \hat{k} + B_1(t) [\cos \omega t \hat{i} - \sin \omega t \hat{j}]$$

$$B_1(t) \cdot [\cos(\omega t)\hat{i} - \sin(\omega t)\hat{j}]$$

Lab vs. Rotating Frame

- The rotating frame simplifies the mathematics and permits more intuitive understanding.

Laboratory Frame

Rotating Frame

Rotating Frame

Rotating Frame Definitions

$$\vec{M}_{rot} \equiv \left[egin{array}{c} M_{x'} \\ M_{y'} \\ M_{z'} \end{array}
ight] \qquad \vec{B}_{rot} \equiv \left[egin{array}{c} B_{x'} \\ B_{y'} \\ B_{z'} \end{array}
ight] \qquad B_{z'} \equiv B_z \\ M_{z'} \equiv M_z$$

$$\vec{M}_{lab}(t) = R_Z(w_0 t) \cdot \vec{M}_{rot}(t)$$
$$\vec{B}_{lab}(t) = R_Z(w_0 t) \cdot \vec{B}_{rot}(t)$$

$$\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B} \qquad \qquad \frac{d\vec{M}_{rot}}{dt} = \vec{M}_{rot} \times \gamma \vec{B}_{eff}$$

$$\frac{d\vec{M}_{rot}}{dt} = \vec{M}_{rot} \times \gamma \vec{B}_{eff}$$

where
$$\vec{B}_{eff} = \vec{B}_{rot} + (\vec{w}_{rot})$$
 fictitious field

$$\vec{\omega}_{rot} = \begin{pmatrix} 0 \\ 0 \\ -\omega \end{pmatrix}$$

$$\vec{B}_{eff} = \vec{B}_{rot} + \frac{\vec{w}_{rot}}{\gamma}$$

$$\vec{B}_{lab} = \begin{pmatrix} B_1(t)\cos\omega_0 t \\ B_1(t)\sin\omega_0 t \\ B_0 \end{pmatrix} \qquad \vec{B}_{rot} = \begin{pmatrix} B_1(t) \\ B_1(t) \\ B_0 \end{pmatrix}$$

Assume real-valued B₁(t)

$$\vec{B}_{rot} = \begin{pmatrix} B_1(t) \\ 0 \\ B_0 \end{pmatrix} \qquad \vec{B}_{eff} = \begin{pmatrix} B_1(t) \\ 0 \\ B_0 - \frac{\omega}{\gamma} \end{pmatrix}$$

$$RF \xrightarrow{B_1} t \qquad B_1(t) = B_1; 0 \le t \le \tau$$

$$B_1(t) = B_1; 0 \le t \le \tau$$

$$\overrightarrow{B}_{eff} = \begin{pmatrix} B_1 \\ 0 \\ 0 \end{pmatrix} \quad \text{On resonance: } B_0 - \frac{\omega_0}{\gamma} = 0$$

$$\frac{d\overrightarrow{M}_{rot}}{dt} = \overrightarrow{M}_{rot} \times \gamma \overrightarrow{B}_{eff} \qquad \theta = \int_0^\tau \gamma B_1(t') dt' = \gamma B_1 \tau$$

$$\frac{d\overrightarrow{M}_{rot}}{dt} = \overrightarrow{M}_{rot} \times \gamma \overrightarrow{B}_{eff} \qquad \theta = \int_0^\tau \gamma B_1(t') dt' = \gamma B_1 \tau$$

$$\Rightarrow \overrightarrow{M}_{rot}(t) = R_x(\theta = \gamma B_1 t) \begin{bmatrix} 0 \\ 0 \\ M_0 \end{bmatrix} = \begin{bmatrix} 0 \\ M_0 sin(\theta) \\ M_0 cos(\theta) \end{bmatrix}$$

$$\begin{array}{c|c}
RF & \xrightarrow{B_1} t \\
\hline
0 & \tau
\end{array}$$

$$B_1(t) = B_1; 0 \le t \le \tau$$

$$\overrightarrow{M}_{rot}(t) = \begin{bmatrix} 0 \\ M_0 sin(\theta) \\ M_0 cos(\theta) \end{bmatrix}$$

$$\theta = 90^{\circ} = \frac{\pi}{2}, \tau = 1ms$$

$$\frac{\pi}{2} = \gamma \cdot 1ms \cdot B_1 \quad \Rightarrow B_1 \approx 0.66G = 6\mu T$$

$$B_1(t) = B_1; 0 \le t \le \tau$$

*B*₁ inhomogeneity:

B₁ reduced by 50%

Bloch Equation with Gradient

$$\frac{d\vec{M}_{rot}}{dt} = \vec{M}_{rot} \times \gamma \vec{B}_{eff}$$

$$\vec{B}_{eff} = \begin{pmatrix} B_1(t) \\ 0 \\ B_0 - \frac{\omega}{\gamma} \end{pmatrix} \longrightarrow \vec{B}_{eff} = \begin{pmatrix} B_1(t) \\ 0 \\ B_0 - \frac{\omega}{\gamma} + G_z z \end{pmatrix}$$

Bloch Equation with Gradient

No RF Pulse ($B_1=0$), with G_z on

$$\overrightarrow{B} = (B_0 + G_z \cdot z)\hat{k} \qquad \overrightarrow{B}_{eff} = (B_0 + G_z \cdot z - \frac{\omega_{RF}}{\gamma})\hat{k}$$

On resonance: $\omega_{RF}=\omega_0$, $\overrightarrow{B}_{\it eff}=(G_z\cdot z)\hat{k}$

Bloch Equation (at on-resonance)

$$\frac{d\vec{M}_{rot}}{dt} = \vec{M}_{rot} \times \gamma \vec{B}_{eff}$$

where
$$ec{B}_{eff}=\left(egin{array}{c} B_{1}(t) & & & \ & 0 & & \ & B_{0} & rac{\omega}{\gamma}+G_{z}z \end{array}
ight)$$

$$\frac{d\vec{M}}{dt} = \begin{pmatrix} 0 & \omega(z) & 0 \\ -\omega(z) & 0 & \omega_1(t) \\ 0 & -\omega_1(t) & 0 \end{pmatrix} \vec{M}$$

$$\omega(z) = \gamma G_z z$$
 $\omega_1(t) = \gamma B_1(t)$

Bloch Equation (at on-resonance)

$$\begin{array}{c|c}
RF & \xrightarrow{B_1} t \\
\hline
0 & \tau
\end{array}$$

$$\overrightarrow{B}_{eff} = (B_0 + G_z \cdot z - \frac{\omega_{RF}}{\gamma})\hat{k} + B_1\hat{i}$$

$$G_z$$
 0
 τ

On resonance:
$$\omega_{RF}=\omega_0$$

$$\overrightarrow{B}_{eff} = (G_z \cdot z)\hat{k} + B_1\hat{i}$$

$$z = -z_1 \qquad \hat{k}$$

$$\hat{i} \qquad B_{eff}$$

$$G_z \cdot (-z_1)\hat{j}$$

What happens when z is very far from z=0?

B₁ Variations

- In MRI, the B₁ field is not always uniform across the imaging volume
- B₁ inhomogeneity can cause:
 - Image shading
 - Incomplete saturation (e.g. in fat suppression)
 - Incomplete inversion (e.g. CSF suppression, myocardium suppression in cardiac scar imaging)
 - Inaccurate/imprecise quantification in T₁ mapping

B₁ Variations

 It is highly desirable if we can excite tissue homogeneously and produce a uniform flip angle throughout

→ Adiabatic Pulses!

"Adiabatic pulses are a special class of RF pulses that can excite, refocus or invert magnetization vectors uniformly, even in the presence of a spatially nonuniform B₁ field."

Adiabatic Passage Principle

Adiabatic Pulses

- A special class of RF pulses that can achieve uniform flip angle
- Flip angle is independent of the applied B₁ field

$$\theta \neq \int_0^T B_1(\tau) d\tau$$

- Slice profile of an adiabatic pulse is obtained using Bloch simulations
- Can be used for excitation, inversion and refocusing

Adiabatic vs. Non-Adiabatic Pulses

Adiabatic Pulses:

$$\theta \neq \int_0^T B_1(\tau) d\tau$$

- Amplitude and frequency/phase modulation
- Long duration (8-12 ms)
- Higher B₁ amplitude (>12 μT)
- Generally NOT multi-purpose (inversion pulse cannot be used for refocusing, etc.)

Non-Adiabatic Pulses:

$$\theta = \int_0^T B_1(\tau) d\tau$$

- Amplitude modulation, constant carrier frequency (constant phase)
- Short duration (0.3 ms to 1 ms)
- Lower B₁ amplitude
- Generally multi-purpose

Adiabatic Pulses

Frequency modulated pulses:

$$B_1(t) = A(t) \exp^{-i\int \omega_1(t')dt'}$$
 frequency envelope sweep

Or phase modulation:

$$B_1(t) = A(t) \exp^{-i\phi(t)}$$

Bloch Equation (at on-resonance)

$$B_1(t) = A(t) \exp^{-i \int \omega_1(t') dt'}$$

$$\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B}_{eff}$$

where
$$ec{B}_{eff}=\left(egin{array}{c} A(t) \\ 0 \\ B_0 & \dfrac{\omega}{\gamma}+\dfrac{\omega_1(t)}{\gamma} \end{array}
ight)$$

$$\frac{d\vec{M}}{dt} = \begin{pmatrix} 0 & \omega_1(t) & 0 \\ -\omega_1(t) & 0 & \gamma A(t) \\ 0 & -\gamma A(t) & 0 \end{pmatrix} \vec{M}$$

$$B_1(t) = A(t)e^{-i\omega_1(t)\cdot t}$$

$$\overrightarrow{B}_{eff} = egin{pmatrix} A(t) \\ 0 \\ \frac{\omega_1(t)}{\gamma} \end{pmatrix}$$

$$B_1(t) = A(t)e^{-i\omega_1(t)\cdot t}$$

$$\overrightarrow{B}_{eff} = egin{pmatrix} A(t) \\ 0 \\ \underline{\omega_1(t)} \\ \gamma \end{pmatrix}$$

$$B_1(t) = A(t)e^{-i\omega_1(t)\cdot t}$$

$$\overrightarrow{B}_{eff} = egin{pmatrix} A(t) \\ 0 \\ \frac{\omega_1(t)}{\gamma} \end{pmatrix}$$

$$B_{1}(t) = A(t)e^{-i\omega_{1}(t)\cdot t}$$

$$\overrightarrow{B}_{eff} = \begin{pmatrix} A(t) \\ 0 \\ \frac{\omega_{1}(t)}{\gamma} \end{pmatrix}$$

$$\overrightarrow{B}_{eff} = A(t_{c})$$

$$\widehat{i}$$

$$\widehat{j}$$

$$B_1(t) = A(t)e^{-i\omega_1(t)\cdot t}$$

$$\overrightarrow{B}_{eff} = egin{pmatrix} A(t) \\ 0 \\ \underline{\omega_1(t)} \\ \gamma \end{pmatrix}$$

$$B_1(t) = A(t)e^{-i\omega_1(t)\cdot t}$$

$$\overrightarrow{B}_{eff} = egin{pmatrix} A(t) \\ 0 \\ \underline{\omega_1(t)} \\ \gamma \end{pmatrix}$$

Adiabatic Excitation

- At the end of the pulse, all the magnetization is in the transverse plane, so we have adiabatic excitation!
- This is also called an adiabatic half passage (AHP)

Adiabatic Inversion

 An adiabatic inversion requires an adiabatic full passage (AFP) pulse:

Adiabatic Inversion

Adiabatic Inversion

Design of Adiabatic Inversion

- General equation for an adiabatic pulse:

$$B_1(t) = A(t) \exp^{-i \int \omega_1(t')dt'}$$

- Many different types of adiabatic pulses can be designed by choosing different amplitude and frequency modulation functions
- The most famous one is...

The Hyperbolic Secant Inversion Pulse!

Hyperbolic Secant Pulse Equations

$$B_1(t) = A(t) \exp^{-i \int \omega_1(t')dt'}$$

where

$$A(t) = A_0 sech(\beta t)$$

$$\omega_1(t) = -\mu\beta \tanh(\beta t)$$

A₀: peak amplitude (µT)

 β : frequency modulation parameter (rad/s)

 μ : phase modulation parameter (dimensionless)

Hyperbolic Secant Pulse Example

Amplitude Modulation, A(t)

Frequency Modulation, $\omega_1(t)$

Pulse Parameters:

$$A_0 = 12 \mu T$$

 $\mu = 5$
 $\beta = 672 \text{ rad/s}$
Duration = 10.24 ms

Comparing Hyperbolic Secant with an AFP Example

Amplitude Modulation, A(t)

Hyperbolic Secant Pulse

Frequency Modulation, $\omega_1(t)$

Some Examples of Other Adiabatic Inversion Pulses

Pulse Name A(t)
$$\omega_1$$
(t)

Lorentz $\frac{1}{1+\beta\tau^2}$ $\frac{\tau}{1+\beta\tau^2} + \frac{1}{\sqrt{\beta}} \tan^{-1}(\sqrt{\beta}\tau)$

HS $\operatorname{sech}(\beta\tau)$ $\frac{\tanh(\beta\tau)}{\tanh(\beta)}$

Gauss^c $\exp\left(-\frac{\beta^2\tau^2}{2}\right)$ $\frac{\operatorname{erf}(\beta\tau)}{\operatorname{erf}(\beta)}$

Hanning $\frac{1+\cos(\pi\tau)}{2}$ $\tau + \frac{4}{3\pi}\sin(\pi\tau)\left[1 + \frac{1}{4}\cos(\pi\tau)\right]$

HSn^c $(n=8)$ $\operatorname{sech}(\beta\tau^n)$ $\int \operatorname{sech}^2(\beta\tau^n) \, \mathrm{d}\tau$

Sin40^d $(n=40)$ $1 - \left|\sin^n\left(\frac{\pi\tau}{2}\right)\right|$ $\tau - \int \sin^n\left(\frac{\pi\tau}{2}\right)\left(1 + \cos^2\left(\frac{\pi\tau}{2}\right)\right) \, \mathrm{d}\tau$

Tannus et al., "Adiabatic Pulses", NMR in Biomedicine, vol. 10, p423

Some Examples of Other Adiabatic Inversion Pulses

The shape of the inversion profile depends on the choice A(t) and $\omega_1(t)$!

HSn°
$$(n=8)$$
 $\operatorname{sech}(\beta \tau^n)$ $\int \operatorname{sech}^2(\beta \tau^n) d\tau$
$$\operatorname{Sin40^d}(n=40) \quad 1 - \left| \sin^n \left(\frac{\pi \tau}{2} \right) \right| \quad \tau - \int \sin^n \left(\frac{\pi \tau}{2} \right) \left(1 + \cos^2 \left(\frac{\pi \tau}{2} \right) \right) d\tau$$

Tannus et al., "Adiabatic Pulses", NMR in Biomedicine, vol. 10, p423

What Will Inversion Profile Look Like?

Inversion Profiles

- The inversion profile typically calculated using Bloch simulation of the RF pulse (will be covered later) shows us the <u>inversion efficiency</u> and <u>RF</u> <u>bandwidth</u>
- The inversion efficiency depends strongly on the B₁ amplitude (as well as pulse duration, T₁, T₂ and pulse shape)
- For the hyperbolic secant pulse,

RF spectral bandwidth = $\mu\beta$

 $B_{1max} >> (\beta \sqrt{\mu})/\gamma$ (B₁ threshold for adiabaticity)

Hyperbolic Secant: Adiabatic Property

Original Pulse (100%) $B_{1_{max}} = 12 \mu T$

75% Attenuated Pulse $B_{1_{max}} = 9 \mu T$

Hyperbolic Secant: Adiabatic Property

Original Pulse (100%) $B_{1_{max}} = 12 \mu T$

60% Attenuated Pulse $B_{1_{max}} = 7.2 \mu T$

B₁ Threshold ≈ 6 µT

Original Pulse (100%) $B_1 = 12 \mu T$

20 15 10 5 0 0 5 10 Time (ms)

125% Amplified Pulse $B_1 = 15 \mu T$

150% Amplified Pulse $B_1 = 18 \mu T$

Comments

- Many envelope/modulation functions work
- If a range of adiabaticity is required, optimization can help reduce pulse length
- Hyperbolic secant needs to be truncated, which can affect the overall performance

Applications of Adiabatic Pulses

Adiabatic Pulses

- Fat suppression (STIR)
- CSF suppression (FLAIR)
- Myocardium suppression in cardiac scar imaging (LGE)
- Black blood cardiac imaging (DIR TSE)
- T₁ Mapping

Late Gadolinium Enhancement (LGE)

- Gold standard for detection of scar/myocardial fibrosis
- Spoiled gradient echo (SPGR) sequence with an inversion pulse (inversion recovery SPGR)
 - Inversion pulse is usually hyperbolic secant pulse
 - Healthy myocardium is nulled with the inversion pulse
 - Scar tissue (which has shorter T₁ than healthy tissue) appear bright

- The conventional LGE sequence uses an RF-spoiled gradient echo (FLASH) readout with an inversion recovery (IR) pulse as a preparation pulse
- The readout is acquired at a time after inversion at which the healthy myocardium signal reaches zero
 Nulled signal

Inversion recovery curves of postcontrast scar (white) and myocardium (red)

from healthy

Clinical Example

Patient with healthy myocardium

Patient with scar tissue

Clinical Example

Late Gadolinium Enhancement (LGE) in patients with implantable cardiac devices

 Presence of an implantable cardiac device in the patients produces an interesting off-resonance artifact

Hyperintensity Artifacts

Hyper-intensity artifact

Conventional IR LGE Image

Conventional IR LGE Image

Cause of Artifact

Longitudinal magnetization produced by conventional IR pulse BW = 1.1 kHz

Solution: Increase Bandwidth of Inversion Pulse

Longitudinal magnetization produced by conventional IR pulse BW = 1.1 kHz Longitudinal magnetization produced by wideband IR pulse BW = 3.8 kHz

No artifact (no ICD)

Conventional IR LGE Image

Hyper-intensity artifact

Conventional IR LGE Image

Hyper-intensity artifact corrected

Wideband IR LGE Image

MATLAB Demo

```
%%% User inputs:
mu = 5; % Phase modulation parameter [dimensionless]
beta1 = 672; % Frequency modulation parameter [rad/s]
pulseWidth = 10.24; % RF pulse duration [ms]
A0 = 0.12; % Peak B1 amplitude [Gauss].
88888
nSamples = 512; % number of samples in the RF pulse
dt = pulseWidth/nSamples/1000; % time step, [seconds]
tim sech = linspace(-pulseWidth/2,pulseWidth/2,nSamples)./1000';
% time scale to calculate the RF waveforms in seconds.
% Amplitude modulation function B1(t):
B1 = A0.* sech(beta1.*tim sech);
% Carrier frequency modulation function w(t):
w = -mu.*beta1.*tanh(beta1.*tim sech)./(2*pi);
% The 2*PI scaling factor at the end converts the unit from rad/s to Hz
% Phase modulation function phi(t):
phi = mu .* log(sech(betal.*tim sech));
% Put together complex RF pulse waveform:
rf pulse = B1 .* exp(1i.*phi);
% Generate a time scale for the Bloch simulation:
tim bloch = [0:(nSamples-1)]*dt;
```


Thank You!

- Further reading
 - Read "Adiabatic Refocusing Pulses" p.200-212
 - Tannus et al., "Adiabatic Pulses", NMR in Biomedicine, Vol. 10, 423-434 (1997)
- Acknowledgments
 - John Pauly's EE469B (RF Pulse Design for MRI)
 - Shams Rashid
 - Kyung Sung

Holden H. Wu, PhD HoldenWu@mednet.ucla.edu https://mrrl.ucla.edu/wulab