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Global Burden of HCC

Hepatocellular carcinoma is one of the most common
form of liver cancer with an estimated case incidence

of >1 million by 2025

Rates have tripled in the United States over the last 3
decades

healthy liver cirrhosis

r
Incidence Rates for United States, 2006 - 2010 Age-Adjusted

AN Races Gnludes i Both Seses, All Ages | 1 ot Hepatitis B and C are the main risk factors for HCC

(Cases per 100,000)

development, although NASH is becoming a bigger
risk factor in the West.

Asians and Hispanics have the highest incidence
rates of HCC in the United States -> 1/3 live in CA.

~40/100,000 in CA alone

Llovet JM et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021 Jan 21;7(1):6.
Han SS et al. . Changing Landscape of Liver Cancer in California: A Glimpse Into the Future of Liver Cancer in the United States. J Natl Cancer Inst. 2019 Jun 1;111(6):550-556.
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Diagnosing HCC

Diagnosis, Staging, and Management of
Hepatocellular Carcmoma: 2 018 Practlce 2. The AASLD recommends diagnostic evaluation for HCC with either multiphase CT or
Guidance by the American Association for multiphase MRI because of similar diagnostic performance characteristics.

the Stlldy Of Liver Diseases Quality/Certainty of Evidence: Low for CT versus MRI

Jorge A. Marrero," Laura M. Kulik,” Claude B. Sirlin,* Andrew X. Zhu,” Richard S. Finn,” Michael M. Abecassis,”
Lewis R. Roberts,’ (0] and Julie K. Heimbach®

Diagnosis

Strength of Recommendation: Strong

CT/MRI Diagnostic Table

_ Definitely benign Arterial phase hyperenhancement (APHE) No APHE Nonrim APHE

Observation size (mm) <20

LR-2 Probably benign

Count additional major features: LR-3

Intermediate probability of malignancy

» Enhancing “capsule” LR-3
 Nonperipheral “washout”

LR-3
* Threshold growth
Probably HCC
M -

- Observations in this cell are categorized based on one additional major feature:

LR-

Definitely HCC « LR-4 - if enhancing “capsule”

* LR-5 - if nonperipheral “washout” OR threshold growth
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BCLC guidelines

)

Eaaed on himot beivden; e Very early stage (0) Early stage (A) termediate stage (B) Advanced stage (C) Terminal stage (D)
read | |+ Any tumor burden
34

function and - Single 52 cm - Single, o s3 nodules each s3 cm « Portal invasion and/or extrahepatic spr
« Preserved liver function, PS 1-2 End stage liver function, PS

physical status * Preserved liver function®, PS 0 | | « Preserved liver function®, PS 0

Refined by AFP, ALBI score,
Child-Pugh, MELD

for liver each s3 cm | | liver transplant fllnodules, preserved extensive

transplantation bilobar liver
involvement

Potential candidate s3nodules,] [ Extended Well defined | [Diffuse, infizative,
portal fiow,

criteria
(size, AFP)

Portal pressure,
To decide individualized e 4 Dinbiy

treatment approach
Contraindications

Normal Incre:sl" toLT

Y!is~ "10

1* Treatment option [ Ablation ][ Resection ] [Ablatlon] [ Transplant Systemic treatment

Expected survival >5 years

!

Not feasible or failure

1* Line
l If not feasible Sorafenib or Lenvatinib or Durvalumab

Treatment stage migration
primes lower priority 2*Line
options due to non-iver
\ - Post sorafenib 1

related clinical profile TACE
Radioembolization (only for single lesion <& cm)

Ramucirumab
(AFP 2400 ngimi)
- Post atezolizumab-bevacizumab
- Post durvalumab-tremelimumab
- Post lenvatinib or Durvalumab

(Age, comorbidities, patient
values and availability)

Clinical decision-making )

*Except for those with tumor burden acceptable for transplant 3" Line
*Resection may be considered for single peripheral HCC with Cabozantinib

(

Reig M, Forner A, Rimola J, Ferrer-Fabrega J, Burrel M, Garcia-Criado A, Kelley RK, Galle PR, Mazzaferro V, Salem R, Sangro B, Singal AG, Vogel A, Fuster J, Ayuso C, Bruix J. BCLC
strategy for prognosis prediction and treatment recommendation: The 2022 update. J Hepatol. 2022 Mar;76(3):681-693.
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Cross Sectional Imaging: MRl Abdomen
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Case Example: Diagnostic evaluation
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How do we do ablations?

Diagnosis 6 #fonth follow up.— N\
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in energy source
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Ablation planning and treatment

Variables at play:

Tissue type
Physiology

Operator mechanics
MWA antenna design

Technically

Insufficient Heating successful Excess heating
ablation

MRI Optimization of Interventional Oncology Procedures

tumor size
visualize anatomy
visualize trajectory.

e manufacturer guidelines
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Benefits of computational modeling

Create a highly controlled environment to investigate
and understand the effects of changing individual
input variables

o Laboratory Work

* More focused experimental studies
 Fewer animal studies

« Decreased developmental costs
« Greater research efficiency

o Clinical Work
+ Tailor treatment to patient-specific
environments

* Optimize device settings before a procedure
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Margins are critical — use modeling to

help you predict it ahead of time!
Margin LTP rate
<=5 mm 60% (21/35)
5-10 mm 10.5% (2/19)
>10 mm 0% (0/6)

Unablated Liver

LTPFS by margin size (MWA)

Months

Shady, Waleed, Elena N. Petre, Kinh Gian Do, Mithat Gonen, Hooman Yarmohammadi, Karen T. Brown, Nancy E. Kemeny, et al. “Percutaneous Microwave versus Radiofrequency

Ablation of Colorectal Liver Metastases: Ablation with Clear Margins (A0) Provides the Best Local Tumor Control.” Journal of Vascular and Interventional Radiology 29, no. 2 (February:
2018): 268-275.e1.
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Modeling ablations: Basics in heat transfer

Ablation Modality Max temperature Mechanism of Risk:
Heating

y
Ablation

Heat Heat FIOW SOIid
Source Tumor

T,—Tc
L

0)
I:)conduction = T = kA
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Modeling MWA: Mechanism of heating

Ablation Modality Max
temperature

Mechanism of Heating Risk:

Lagseke et al JVIR 20:1224-1229, 2009.

Factors that make MWA amenable to modeling

-
(o)
o

-
N
(&)

Tissue-specific heating based on antenna
design

Temperature (°C)

* Less susceptibility to the heat-sink effect —RF

= Microwave

300 400 500 600
Time (s)
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Basic computational setup and output

A) Coaxial Power Port Solve Maxwell’s equation to get time-
dependent electromagnetic field
propagation

(1) Gauss’ Law

(2) Gauss’ Law for magnetism

(3) Faraday’s Law

(4)  Ampere-Maxwell Law

°
c
4]
c

L
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k]
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o
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z
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o
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Convective Heat/Mass Transfer

Solve for heat generation from electric
field vector

Specify the environment Q = %0|E|2 (W/m3)
and antenna geometry

Chiang J, Wang P, Brace CL. Computational modelling of microwave tumor ablations. Int J Hyperthermia. 2013;29(4):308-317.

MRI Optimization of Interventional Oncology Procedures June 4, 2025




Tool Optimization: Organ-specific design

225 e=mBone

SAR (W/kg)

emw| jver Tissue

Breast Tissue

Lung Tissue

0.5 1.5 2.5 35
Frequency (GHz)
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Tool Optimization: Shape-specific design

7
IEYE] Modified Triaxial Dual-Slot 10

A

Ocm Ocm

Chiang et al. Radiology 268:382-89, 2013.
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Comparison between lung-tuned and
liver-tuned antennas

Lung-tuned antenna Liver-tuned antenna

J. Chiang, L. Song, F. Abtin and Y. Rahmat-Samii, "Efficacy of Lung-Tuned Monopole Antenna for Microwave Ablations: Analytical Solution and Validation in'a
Ventilator-Controlled ex-vivo Porcine Lung Model," in IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology (in press)
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Tunable Microwave Antennas
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Thermal ablations and the heat-sink effect

9-month
During abl
/* %
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Calculating time-dependent
temperature maps

A 307.05

Continuum approach: Use Pennes bioheat equation to
create time-dependent ablation isotherms:

oT
V- kVT — ppcpwp(Tao = T) + g+ = pc—-

a 360
Therma! Blood flow Metabolic heat
conduction 340

320

300

¥ 293.15

UCLA MRI Optimization of Interventional Oncology Procedures June 4, 2025 21



UCLA

Calculating time-dependent
temperature maps

Vascular approach: Model the impact of each vessel
individually — mimic the patient-specific vascular
anatomy for each ablation zone

MRI Optimization of Interventional Oncology Procedures
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2D Phase Contrast

o One directional through-plane (Z) velocity encoding sequence
o Acquisition of 2 images:
YY) o 1 Magnitude image

o 1 Phase image

Region of Interest: Targeting
vessel or anatomy

S

R
o9
A

Magnitude image: Signal intensity
proportional to velocity but no
directional information

Phase image: blood flow shows
directional information
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o One directional
through-plane (2)
velocity encoding
sequence

o Acquisition of
4 images: 1
Magnitude
image + 3
Phase image

Azarine A, Gargon P, Stansal A, Canepa N, Angelopoulos G, Silvera S, Sidi D, Marteau V, Zins M. Four-dimensional Flow MRI: Principles and

4D flow

4D Flow Raw « Big » Data

MRI

Local processing (Powerful GPU) or
Cloud processing (Protected Health Information)

Antero-posterior Superior-Inferior

Preprocessing:
Phase Offsets &
Background
correction

Maxwell trends

Eddy currents
Velocity aliasing
Noise masking
Filtering of static
tissue

Post-Processing:

Quantitative
Flow Analysis

Current trends
* Forward Flow
* Reverse Flow
* Regurgitation
Fraction
» Peak Velocity

Visual
Flow Analysis

.\

J Advanced tools

! « Wall Shear Stress
40 * Pressure difference
4§ ° Kinetic energy loss

/

Cardiovascular Applications. Radiographics. 2019 May-Jun;39(3):632-648. doi: 10.1148/rg.2019180091. Epub 2019 Mar 22
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4D flow MRI: Neuro applications

\

Velocity (m/s)
0.00 0.38 0.75
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4D flow MRI: Visualizing Flow

Particle traces in the cardiac Streamlines in the Liver
system

Velocity (cm/s)
25

13
0

MRI Optimization of Interventional Oncology Procedures June 4, 2025




4D flow: Liver Applications

)

PV

hypertension. a: Reversed (hepatofugal) flow is seen in the portal and splenic veins. Conservation of mass analysis
showed good agreement (4.57%) between QPV and QSMV p QSV. b: Reversed QSV with reduced QPV and norma
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Hepatic Angiogram showing similar
reversal of flow
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4D flow: Liver Applications

Four-dimensional-flow MR imaging— based visualization and quantification of
hemodynamics in the portal system before and after TIPS placement in a 54-
old man with portal hypertension and refractory ascites.

Velocity [m/s]
0.5 @
0.0

A) Segmentation of 4D-flow angiograms obtained B) Velocity-coded 4D-flow MR images obtained

sy

\
A

Post

year-

Velocity [m/s]

OS@
0.0

before (pre) and 2 weeks after (post) TIPS placement before and 2 weeks after TIPS placement show velocit

show arteries (red), veins (blue), portal vasculature distribution in the portal circulation. Note the high

(vellow), and TIPS (gray). velocity in the TIPS, with a signal dropout at the
proximal end of the TIPS due to disordered flow.

Roldan-Alzate, Alejandro, Christopher J. Francois, Oliver Wieben, and Scott B. Reeder. “Emerging Applications of Abdominal 4D Flow MRI.” AJR. American Journal of

Roentgenology 207, no. 1 (July 2016): 58—66.
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4D flow: Ablation-related hemodynamics

A\VPV

LOGIQ
corV E) A
Aaaty
|

B

v

LIVER TRANS

4D Flow images showing flow MWA zone (blue arrow) creating water
within the portal veins and IVC. vapor (yellow arrow) that is
recondensing while in the hepatic vein:
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4D flow: Ablation-related hemodynamics
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Predicting ablation volume

y =-2.615x + 11.277
R? = 0.6454

Flow rates versus Ablation Size

=
E
(]
£
=
(2]
>
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S
2
<

15 2 25

Flow Rate (mL/sec)
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Modeling Heat and Mass Transfer

LOGIQ |
E9 A

LIVER TRANS
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Modeling MWA: Incorporating water vapor

Solve heat transfer equation in Solve for liquid water and water
®®¢® horous media vapor diffusion through liver tissue

oT dc
(pC)eq§+ pLCortt - VT = V- (keqVT) + Q —+u-Vc=V-(DVc)+R

at

Chiang, Jason, Sohan Birla, Mariajose Bedoya, David Jones, Jeyam Subbiah, and Christopher L. Brace. “Modeling and Validation of Microwave Ablations with Internal Vaporization
Transactions on Bio-Medical Engineering 62, no. 2 (February 2015): 657—63.
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Water vapor diffusion = Contraction
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Contraction in Clinical Practice
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MR thermometry during Thermal Ablation

GOAL: To develop a PRF-based MR thermometry technique
for monitoring temperature during MR-guided Liver Ablation
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-ﬂ Ablation ‘ Evaluation

eee IN-vivo visualization and targeting of MR-
compatible MWA antennas
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Targeting ﬂ- - Evaluation

After ablation Reference

e e PR S T ¥ ot s s
SRR S ¥ ;{i\“‘.b&g

PRF temperature map

Temperature map after phase unwrapping
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Targeting ‘ Ablation ‘ -

T1 VIBE T2 HASTE T2 SPACE

‘ ]

Target #1 El

o 4

" -

Target #2 Target #2 Target#2

Target #1 Target #1 Target #1

VA Z Y 4

Coronal

Sagittal

Target #1 Target #1 Tariat #1
. T e,

Charring zone: dark Charring zone: bright 5 Charring zone: bright
Coagulation zone: bright Coagulation zone: bright : Coagulation zone: dark

JAVAEL
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MR Thermometry Near Critical Structures

Isotherm Regions Overlay,Frame = 1

m— | sotherm50 (Ablation Zone)
Isotherm43-47 (Hyperthermia Reqgion)
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Current state of microwave planning
and modeling

Patient: Pat Demo J | ) Patient: Pat D{
D # 35,22, 67 - ? D #: -35, 2]
DOB : Sex: 1/1/80 : Male . L DOB : Sex: 1/1/8(
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it CONFDENTIAL
D 000
111001 : valid

Target Contracted by User: 30%

Integratlng contraction into MWA plannlng
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Back to original case: Diagnostic evaluation

8/27 10/15

ADQ Gen 7 112U.0 Ml 1.9
C5-1

Trans R'i'ght Liver
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Transarterial chemoembolization + ablation

Right & Rightd] 8
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Post-embolization ablation
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Post-ablation CT scan
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Perfusion MRI




Standard contrast-enhanced MRI vs DCE-MRI

Pre-contrast Arterial Portal-Venous
Phase Phase

Pre-contrast Frame =1 Frame =2
N / e 'A\
s : :
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5 8
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38
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8

Signal Intensity
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13
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0 24

Dynamic Contrast-Enhanced MRI (DCE-MRI) for Quantitative Analysis

Time [seconds]

Conventional Multi-Phase Contrast-Enhanced MRI (CE-MRI)
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Modeling Perfusion with Tofts model

C,(1)=v,C,()+K™ [ C, (x)e ®" """y
0

C+(t) is the total tissue contrast agent concentration
Co(t) is the time-varying blood plasma concentration
after a bolus of gadolinium is administered

Ktrans (Min-1) is the forward rate constant

kep (min-1) is the backward rate constant.

Calculating free parameters Ktrans and kep required an
assumption of the arterial plasma concentration Cp(t), for
which a population-derived arterial input function
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Study Question

Can pre-ablation perfusion MRI predict the
microwave ablation zone sizes near liver
vessels in an in-vivo liver model?
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In Vivo Study Design

Treatment-
naive pigs
(n=5)

Hepatic Microwave
Embolization Ablation

Ablation zone
volume
measurements

DCE Imaging DCE Imaging

Study goal:
Correlation of post-embolization
perfusion with ablation volume in

combination therapy
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Modeling the effects of perfusion

Heat source

aoT

eoe V- kVT — + g, +0 = ’DCE

Therma! Blood flow Metabolic heat
conduction
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Histopathology and modeling

k__ (Normalized) vs time K [Normalized) vs time
ep ¢ ) rans 9 ¥ Wilcoxon, p = 2.2¢-05 e

embolized
non-embolized

embolized

BB entoiass

B ronomboized

a
§
£
El
g
s
E
2
=
@
g
2
2
5

embolized non-embolized

Wilcoxon, p = 0.00073

K_trans

embolized

change in normalized

Time (scans) Time (scans)

Chiang J, Sparks H, Rink JS, Meloni MF, Hao F, Sung KH, Lee EW. Dynamic Contrast-Enhanced MR Imaging Evaluation of Perfusional Changes and Ablation Zone Size after Combination
Embolization and Ablation Therapy. J Vasc Interv Radiol. 2023 Feb;34(2):253-260. doi: 10.1016/j.jvir.2022.10.041.
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Correlating DCE-MRI parameters with
ablation volume

Final ablation volume vs K'ans Final ablation volume vs k,,

Y =-7.731*"X + 30.11
R2=0.232

Y =-9.811*X + 32.35
R?=0.345

Ablation Volume (mL)
Ablation Volume (mL)

1
1.0 1.5

Ktrans (min-1) Kep (min)

Chiang J, Sparks H, Rink JS, Meloni MF, Hao F, Sung KH, Lee EW. Dynamic Contrast-Enhanced MR Imaging Evaluation of Perfusional Changes and Ablation Zone Size after Combination
Embolization and Ablation Therapy. J Vasc Interv Radiol. 2023 Feb;34(2):253-260. doi: 10.1016/j.jvir.2022.10.041.
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Validation of numerical models

Increasingly complicated numerical models

Model Validation

/ ‘ \ In vivo tissue models

Ex vivo tissue models

Microwave
Applicator

Fiber-optic —
temperature -
probes

Liver phantom Vessel Flow pump
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Summary: MR guided interventions

ee®@® DModeling of microwave ablations can more accurately characterize
the impact of energy delivery strategies in a complex biological

environment.
o Patient-specific MR-derived parameters (vascular anatomy, tissue

properties, water vapor movement, contraction) Give physicians a 0ol
to predict when more aggressive needle placement or power Setings
are warranted.

o Repeat in silico instead of in patient.

Validation is critical to any model — large animal model studies
required to truly move the needle forward
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